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In this paper, we address ourselves to the nonmagnetic disorder effects onto the quantum critical point,
which intervenes the three-dimensional Z2 quantum spin Hall insulator �topological insulator� and an ordinary
insulator. The minimal model describing this type of the quantum critical point is the single copy of the 3
+1 Dirac fermion, whose topological mass m induces the phase transition between the topological insulator
and an ordinary one. We first derive the phase diagram spanned by the mass term m, chemical potential �, and
strength of the disorder within the self-consistent Born approximation. By way of this, we find a finite density
of state appears even at zero energy and at the phase-transition point, i.e., m=�=0, if the strength of the
disorder potential exceeds some critical value. To infer the structure of the low-energy effective theory around
these zero-energy states, we further calculated the weak-localization correction to the conductivity. To be more
specific, we have found that the diffuson is dominated by the charge diffusion mode and parity diffusion mode.
While the charge diffusion mode always carries the diffusion pole, the parity diffusion mode becomes massless
only at m=0, but suffers from the infrared cutoff for nonzero m. Corresponding to this feature of the diffuson,
the Cooperon is also composed of two quasidegenerate contributions. We found that these two give rise to the
same magnitude of the anti-weak-localization �AWL� correction with each other at m=0. As a result, when the
topological mass m is fine tuned to be zero �but for generic ��, the AWL correction becomes doubled �quantum
correction doubling�. Based on this observation, we will discuss the possible microscopic picture of the
“levitation and pair-annihilation” phenomena, recently discovered by Onoda et al. �Phys. Rev. Lett. 98,
076802 �2007��.
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I. INTRODUCTION

Physics of spin transport has been a matter of intensive
research in recent years. One of the topics of current interest
is the spin Hall effect. This has been originally proposed
theoretically1,2 and later followed by various experimental
results.3,4 The research on the spin Hall effect opens a new
field of Hall effects in time-reversal invariant systems. This
has also led us to a new concept of the quantum spin Hall
effect, which is the natural “spin” extension of the quantum
Hall effect.5–7 In the quantum spin Hall effect in two dimen-
sions, the bulk is gapped while there are gapless edge states
carrying spin current. In this case, the external magnetic field
is zero, while the spin-orbit coupling acts as a “spin-
dependent magnetic field,” giving rise to the effect analogous
to the quantum Hall effect. Such insulators showing the
quantum spin Hall effect are characterized by the Z2 topo-
logical number.5 We shall call them as Z2 quantum spin Hall
insulators �QSHI�.

The simplest system for the two-dimensional �2D� Z2
QSHI is realized as a superposition of the wave functions of
two quantum Hall subsystems,5–7 one with spin up and the
other with spin down, having opposite Chern numbers. The
system respects not only the time-reversal �T� invariance but
also the spin conservation. Such an insulator supports the
same numbers of right-moving up-spin edge states and left-
moving down-spin edges.

This Kramers pair of chiral edge states is often called as
the helical edge state. By its construction, the number of this
Kramers pairs of edge states corresponds to the Chern inte-

ger associated with its bulk-wave function.8 The T symmetry
guarantees the double degeneracy between right-moving up-
spin and left-moving down-spin states. Thus, the stability of
each Kramers pair is supported by this T symmetry.

Spin nonconserving �but T invariant� perturbations, how-
ever, introduce level repulsions between two different Kram-
ers pairs. Namely, they usually let two pairs annihilate with
each other, and open a gap. Accordingly, in the presence of
generic spin-nonconserving perturbations, those wave func-
tions having even numbers of Kramers pairs reduce to trivial
insulators, which have no gapless edge states.9–12 Mean-
while, wave functions having odd numbers of pairs still can
have one active helical edge mode. The latter is dubbed as
the Z2 quantum spin Hall �topological� insulator. Thus, sta-
bility of such a gapless edge state is protected only by the T
symmetry, which does not require spin-conservations
anymore.9–14

The three-dimensional �3D� version15–20 of the Z2 QSHI
carries same characters as that of 2D does. The 3D Z2 QSHI
also allows any spin-nonconserving perturbations, while al-
ways requires the T symmetry. Simultaneously, however, it is
not a mere extension of the 2D Z2 QSHI, in a sense that 3D
Z2 QSHI has no U�1� analog of QSHI. Namely, they support
a 2+1 massless Dirac fermion as its surface state,15,19 instead
of a helical edge state. In the 2D surface Brillouin zone, say
kx-ky plane, this massless Dirac fermion has a spin which
depends on the �surface� crystal momentum. It is clear that
such an insulator cannot be adiabatically connected into a
composite of two spinless wave functions. In such Z2 QSHI,
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the T symmetry therefore guarantees the massless nature of
each 2+1 surface Dirac fermion.

Z2 QSHI always has a quantum critical point �QCP� at its
phase boundary to any ordinary insulators, in both 2D and
3D. For example, from the 3D tight-binding model proposed
by Fu et. al.,15 we can explicitly see this; when a certain T
symmetric parameter is varied in their model, 3D Z2 QSHI is
driven into an ordinary insulator, latter of which does not
support any surface states �see Fig. 1�. Observing this, a
following question naturally arises; during this tuning, the T
symmetry is always preserved so that the massless nature of
the surface Dirac fermion is supposed to be protected by this.
At the same time, however, this 2+1 surface fermion should
have become “massive” when a system enters an ordinary
insulator phase. Thus, one might ask how this single surface
Dirac fermion could acquire a finite mass, with keeping the T
symmetry.

The answer is simple; we have two sample boundaries,
say z= +L and z=−L. Each boundary supports one 2+1 sur-
face massless Dirac fermion. They are localized at each
boundary, when the bulk gap is sufficiently large. In such a
situation, a mixing between these two 2+1 surface massless
Dirac fermions is tiny, i.e., O�e−L/�� with � being the local-
ization length. However, when a system becomes close to the
quantum critical point, a mixing between these two surface
states becomes substantial with increasing �. When a bulk
eventually reaches the quantum critical point, two surface
massless Dirac fermions readily communicate via extended
bulk states. Thus, they generally annihilate in pairs, just as in
those insulators having even number of 2+1 surface Dirac
fermions at one boundary.

This simple picture in the clean limit raises the following
nontrivial speculations about the disorder effects on the Z2
QSHI. Suppose that T-symmetric random potentials are in-
troduced in the topological insulator phase. When the corre-
sponding bulk gap is sufficiently large, we could begin with
two separate bands. The scaling argument in 3D �Ref. 21�
tells us that each band should always have two mobility
edges, respectively �see Fig. 2�b��. Namely, there is no delo-
calized bulk-wave function near the zero energy. Starting
from this phase, let us change some T-invariant model pa-
rameters so that a bulk transits from this topological insulator
to an ordinary one. From the argument in the clean limit, one
can then expect that a delocalized bulk-wave function should
emerge at the zero-energy region at the quantum critical
point, i.e., �=m=0 �see Fig. 2�a��. If it were not, the two
surface states localized at the two sample boundaries could
not communicate at all and they could not annihilate with
each other. As a result, the system was unable to smoothly

enter an ordinary band insulator since the latter one does not
support any surface state at all.

To put this reversely, the existence of the QCP having
extended bulk-wave functions is always required, whenever
this critical point separates an ordinary insulator and the to-
pological insulator. This is because these two insulating
phases support different numbers of Kramers pairs of surface
states. Moreover, provided that each surface state is stable by
itself, this QCP should be also stable however small the den-
sity of state �DOS� at the zero energy is and however strong
the disorder strength is. Otherwise, the topological insulator
could be adiabatically connected into an ordinary band insu-
lator, which contradicts the different Z2 topological numbers
for the two phases.

In this paper, we will uncover several intriguing features
associated with the nonmagnetic disorder effects onto this
topological quantum critical point. The organization of this
paper is summarized as follows. In Sec. II, we will briefly
review the effective continuum model for the quantum criti-
cal point intervening the Z2 topological insulator and an or-
dinary insulator. The effective model is known to be de-
scribed by the 3+1 Dirac fermion, whose mass term brings
about the topological quantum phase transition. Namely,
when the mass term changed from positive to negative, a
system transits from the topological insulator to an ordinary
insulator. As such, we call this mass term especially as the
topological mass term. Based on this effective model, we
will next introduce various types of the on-site random po-
tentials respecting the T symmetry. Note that, in this paper,
we restrict ourselves to T-symmetric cases and exclude mag-
netic impurities because, in the absence of the T symmetry,
the two phases are no longer topologically distinct.

Based on the self-consistent Born approximation, we first
work over the single-particle Green’s function in Sec. III.
The phase diagram spanned by the �bare� chemical potential
�, �bare� mass term m, and strength of the disorder � is
derived. In particular, at the critical point, i.e., m=0, we
found some critical value of the disorder strength, �c, above
which the zero-energy state, i.e., �=0, acquires a finite life-
time �,

FIG. 1. A schematic phase diagram for the quantum critical
point intervening the Z2 QSHI and an ordinary insulator. m is a
system parameter driving the phase transition. When m=0, the sys-
tem is in a critical phase. In the Fu-Kane-Mele model, it corre-
sponds to the relative strength of one out of the four nearest neigh-
bor transfer integrals emitting from a single diamond lattice site.

FIG. 2. �Color online� A schematic picture of the density of state
and mobility edges, where hatched region corresponds to the ex-
tended state. Inset represents the energy dispersion as a function of
surface crystal momentum, where the two crossing lines �red lines�
correspond to the surface state at z= �L. �a� m=0; at quantum
critical point. �b� m�0; in the topological insulator phase.
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Since the density of state in our model is always proportional
to the inverse of the lifetime �see below�, nonzero �−1 simply
means that a system is in a compressible phase.

When a finite but small topological mass m is introduced
for ���c, the lifetime � and the renormalized mass m̄ be-
comes as follows:

�1

�
,m̄� = �� 1

�0
2 −

m2

4
,
m

2
� , �2�

where �0 is given as a function only of � via Eq. �1�. Thus,
when the bare topological mass exceeds the critical value
mc�2�0

−1, the density of state vanishes so that a system en-
ters an incompressible phase. This gapped phase can be adia-
batically connected into band insulator phases in the clean
limit. Accordingly, we will reach the phase diagram for the
zero-energy state as depicted in Fig. 3. In Sec. III, we also
describe the behavior of the one-particle Green’s function for
a finite � �see below�, in which we observe that the com-
pressible phase �not necessarily metallic phase� always inter-
venes the topological insulator phase and an ordinary insula-
tor phase as in Fig. 3.

Focusing on this intervening compressible phase, espe-
cially for ���c, we will derive in Sec. IV the diffuson,
Cooperon, and the weak-localization correction to the elec-
tric conductivity. We will first observe that the diffuson is
composed of two quasidegenerate low-energy modes,

	̂d�q,
� �
1


 + iDq2 	̂1
d +

1


 + iDq2 + i�topo
−1 	̂2

d + ¯ �3�

�see Fig. 11 or Eq. �74� for the definition of 	̂d�q ,
��. The
first term participates in usual charge diffusion mode, and
therefore always has the diffusion pole, i.e., �
+ iDq2�−1 �

and q stand for the frequency and momentum of the density
fluctuation, respectively�. The other low-energy mode, how-
ever, becomes massless only in the absence of the topologi-
cal mass m. Namely, its low-energy and long-wavelength
behavior is generally truncated by the infrared cutoff �topo

−1 ,
while this infrared cutoff reduces to zero at m=0 �but generic
��, i.e., �topo

−1 �m2.

Physically speaking, this second mode describes the dif-
fusion of the parity-density degree of freedom, which be-
comes a conserved quantity of our effective Hamiltonian at
m=0. Namely, the parity-density correlation function exhib-
its the diffusion pole structure at the critical point �m=0�,
while it becomes massive in the presence of the finite topo-
logical mass. Consequently, the diffuson acquires one addi-
tional low-energy, i.e., the second term of Eq. �3�, into which
the information of this parity-density correlation function is
separately encoded.

When the hole line of the diffuson time reversed, these
two-mode features are transcribed into the Cooperon: the
Cooperon thus obtained is also composed of two quasidegen-
erate dominant contributions,

Ûcoop�k + k�,
� �
1


 + iD�k + k��2Û1
c

+
1


 + iD�k + k��2 + i�topo
−1 Û2

c + ¯ �4�

�see Fig. 11 and its caption for the definition of Ûcoop�k
+k� ,
��. In Sec. IV, we will see that, at the critical point
�m=0�, these two contributions give rise to the same ampli-
tude of the anti-weak-localization �AWL� correction to the
electric conductivity. When the finite topological mass is in-
troduced, however, the Cooperon associated with the parity
mode channel becomes ineffective since its backward-
scattering behavior is truncated by the cutoff �topo

−1 . Mean-
while, the Cooperon obtained from the charge mode channel
remains effective even in the presence of finite m. As a re-
sult, the AWL correction at the critical point becomes pre-
cisely halved, on introducing the finite topological mass
�quantum correction doubling�.

In terms of this behavior of the parity diffusion mode and
that of the corresponding AWL correction, we will argue in
Sec. V the possible microscopic mechanism of how the de-
localized bulk-wave function emerges at the critical point,
i.e., m=�=0. To be more specific, we expect that the parity
diffusion mode mentioned above generally becomes mass-
less, when a system transits from the topological insulator
side to the ordinary insulator side. Assuming that this is the
case, we will attribute the emergence of the extended bulk-
wave function to the AWL correction obtained from this par-
ity mode channel, i.e., the second term of Eq. �4�. For the
systematic understanding, however, one generally needs to
go beyond the theoretical approach employed in this paper.
Several open issues will be also discussed in Sec. V.

A number of appendixes describe other topics useful in
understanding the main text in more detail. For clarity of the
explanation, we have presented the results only in the case of
chemical-potential-type disorder in the text. The study in the
presence of general T-symmetric disorders becomes more
cumbersome. But the basic feature such as the phase diagram
is expected to be same. In Appendix A, we will describe how
the one-particle Green’s function at the zero-energy state be-
haves in the presence of these general T-invariant random
potentials.

FIG. 3. �Color online� A schematic phase diagram for �=0. A
blue shaded region corresponds to a compressible phase, which
separates two gapped phases, i.e., an ordinary insulator and the
topological insulator. The phase boundary for ���c is given by

1−
�c

� � m
2 arctan� 2

m �.
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Our weak-localization calculation described in Sec. IV is
the controlled analysis, when it comes to the weakly disor-
dered region, ���c. Namely, for this parameter region, one
can confirm self-consistently the coupling constant 1 /kFl
�1 /�� to be sufficiently small around �=0 �see Eq. �70��.
For ���c, however, this coupling constant generally di-
verges toward �=0, only to make the weak-localization cal-
culation �and self-consistent Born �scB� calculation� an un-
controlled analysis. Thus, as the complementary analysis for
this strongly disordered region, ���c, we employed the
mode-mode coupling analysis in Appendixes B–D. By taking
into account the quantum interference effect due to the
Cooperon terms, this theoretical framework gives us the gap
equation for the diffusion constant. Main results in Sec. IV
such as the quantum correction doubling are also supported
by the analysis in Appendixes B–D.

II. EFFECTIVE CONTINUUM MODEL AND DISORDER

A. Effective continuum model

We consider a system with both T symmetry and the spa-
tial inversion �I� symmetry. Under this symmetry require-
ment, Murakami et al.22,23 recently derived the minimal
model for an arbitrary quantum critical point intervening the
topological insulator and an ordinary insulator on a quite
general ground. It turns out to be always described by the
3+1 Dirac fermion given as follows:

H0 �	 d3r�†�r�
�
�=1

3


̂��− i��� − m
̂5���r� , �5�

where m corresponds to the topological mass term. Without
loss of generality, one can regard the topological insulator
phase to be m�0 and an ordinary insulator phase to be m
�0 �see Fig. 1�. To see that “m” actually endows this Dirac
fermion with a mass, we note that following five 4�4 

matrices are anticommuting with one another:


̂1 � �̂y � 1,
̂2 � �̂z � ŝx,
̂3 � �̂z � ŝy ,


̂4 � �̂z � ŝz,
̂5 � �̂x � 1.

The matrices �̂� and ŝ� are Pauli matrices, representing the
�generalized� sublattice index, and the spin index, respec-
tively. In terms of these Pauli matrices, we will take the T
operator as iŝyK with K being the complex conjugation.
Meanwhile, the I operator will be taken as �̂x. It follows
from these conventions that 
̂1,2,3,4 are T odd and I odd,
while 
̂5 is T even and I even �see Table I�. Together with
the property that −i�� is T odd and I odd, we can easily see
that our Hamiltonian in the clean case is indeed T even and I
even. This guarantees the Kramers degeneracy at each k
point, irrespectively of the topological mass m. We also note
that Eq. �5� is indeed the low-energy effective continuum
Hamiltonian for various lattice models recently discussed in
literature.15,19,24

Generally speaking, we can enumerate all Hermite matri-
ces possible in this spin-sublattice space. Namely, using the
commutator between these five Dirac matrices, we have
other 10� 5C2 associated Dirac matrices,


̂ij �
1

2i
�
̂i,
̂ j� = − i
̂i
̂ j . �6�

We can further classify these ten matrices into two classes;
one is T invariant �even� matrices and the other is T odd.
Since the five Dirac matrices are always even under I ·T,
these ten associated Dirac matrices are by construction odd
under I ·T. Thus the symmetries of these ten matrices can be
summarized as in Table II.

Let us introduce T-symmetric “on-site-type” random po-
tentials as generally as possible,

Himp �	 dr�†�r�
v0
̂0 + v5
̂5 + �
j=1

4

v j5
̂ j5���r� , �7�

where all the six components of the vector v��r� are real-
valued functions of r. Then, each single-particle eigenstate of
H0+Himp always has a Kramers pair state


�̃�r�� � 1̂ � �− i�ŝy���r�� . �8�

Namely, ��̃�r�� and ���r�� are degenerate and orthogonal to
each other. Noting this, one can see that the retarded �ad-
vanced� Green’s function observes the following relation in
each ensemble:

ĜR�A��r,r�;�� � �
n

��n�r��
�n�r���
� − �n � i�

= 1̂ � ŝy · �ĜR�A��r�,r;���t · 1̂ � ŝy . �9�

TABLE I. Dirac operators and their symmetries.

Dirac matrices T I


̂0�1 � 1 + +


̂1� �̂y � 1 − −


̂2� �̂z � ŝx − −


̂3� �̂z � ŝy − −


̂4� �̂z � ŝz − −


̂5� �̂x � 1 + +

TABLE II. Dirac associated operators and their symmetries

10 matrices T I


̂15�−�̂z � 1 + −


̂25� �̂y � ŝx + −


̂35� �̂y � ŝy + −


̂45� �̂y � ŝz + −


̂12� �̂x � ŝx − +


̂13� �̂x � ŝy − +


̂14� �̂x � ŝz − +


̂23�1 � ŝx − +


̂34�1 � ŝy − +


̂42�1 � ŝz − +
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B. Disorder averages, spatial inversion symmetry, rotational
symmetry, and engineering dimension

As usual, we will take the quenched average of these T
invariant impurities at the Gaussian level,

¯̄ �
1

N	 D�v�eP�v�
¯ , �10�

P�v� � �
j,m��0,5,15,¯,45�

	 	 d3rd3r���̂−1��r,j�r�,m�v j�r�vm�r�� ,

�11�

with a proper normalization factor N and real-valued sym-

metric matrix �̂. For simplicity, an on-site-type correlation
will be assumed,

��r, j�r�,m� � � jm�3�r − r�� . �12�

We also suppose that the translation symmetry and the spa-
tial inversion symmetry are recovered after these quenched
averages,

ĜR�A��r,r�;�� � ĜR�A��r + b,r� + b;�� , �13�

ĜR�A��r,r�;�� � �̂x � 1̂ · ĜR�A��− r,− r�;�� · �̂x � 1̂ .

�14�

Then, the latter symmetry, i.e., Eq. �14�, prohibits any
matrix elements between 
0,5 and 
 j5�j=1, . . . ,4� in the

right-hand side of Eq. �12�. Namely, the 6�6 matrix �̂ in its
right-hand side takes the following form:

�̂ � ��00 �05 0

�50 �55 0

0 0 �̂a

� , �15�

with

�̂a � ��1515 ¯ �1545

] � ]

�4515 ¯ �4545
� . �16�

This is because 
̂0,5 are even under I, while 
̂ j5�j
=1,2 ,3 ,4� are odd. In order that the Gaussian integral in Eq.

�10� converges, all the eigenvalues of �̂ have to be positive.
Accordingly, the matrix elements described in Eqs. �15� and
�16� must obey the following inequalities:

�00�55 � �05�50 = �05
2 ,

�00 + �55 � 0, Tr�̂a � 0, . . . . �17�

We can study the effects of these general T-invariant on-
site-type random potentials, without any further assumptions.
As will be partly shown in Appendix A, however, such an
analysis becomes very cumbersome and lengthy. Thus, we
henceforth consider only the chemical-potential-type disor-
der �00 because it is expected to be dominant among various
types of disorder. Those who are interested in the effects of

other components such as �05,�55 and �̂a may consult Ap-
pendix A. In Appendix A we have studied the effect of the
T-reversal invariant on-site-type disorder on a general
ground, focusing on the zero-energy wave function at the
critical point.

Being translationally invariant as in Eq. �13�, the averaged
Green’s functions can be readily Fourier transformed by the
use of the crystal momentum k. The resulting Green’s func-
tions can be expanded in terms of Dirac matrices and its
associates,

ĜR�k,�� � �
j��0,1,·,5,15,¯,42�

F j�k,��
̂ j . �18�

Fi�k ,�� stands for some complex-valued function of k and
�. In this momentum representation, T and I invariance, i.e.,
Eqs. �9� and �14�, read as follows:

�̂x � 1̂ · ĜR�A��k,�� · �̂x � 1̂ = ĜR�A��− k,�� , �19�

1̂ � ŝy · ĜR�A��k,�� · 1̂ � ŝy = �ĜR�A��t�− k,�� . �20�

These two symmetries require that Fi=1,. . .,4�k ,�� are odd
functions of k, F0,5 are even functions of k, and also that
Fij �0 for i� j and i , j=1, . . . ,5. Namely, the retarded and
advanced Green’s functions are given only in terms of the
anticommuting Dirac matrices,

ĜR�k,�� � F0�k,��1̂ + �
�=1

5

F��k,��
̂�, �21�

ĜA�k,�� � F0
��k,��1̂ + �

�=1

5

F�
� �k,��
̂�. �22�

In addition to the T symmetry and I symmetry, the pseu-
dospin rotational symmetry is also recovered after the
quenched average. This is because only the chemical-
potential-type disorder �00 is considered now. Specifically,
the one-point Green’s function after the quenched average
respects the simultaneous rotations of the spatial coordinate
and the pseudospin coordinate,

Ûn,� · ĜR�A��k,�� · Ûn,�
† � ĜR�A��Rn,�k,�� ,

Ûn,� � e��/4�����n�
̂�
̂�. �23�

�, �, and � above run over 1, 2, and 3. Rn,� in the right-hand
side stands for the spatial rotation around the vector n by the
angle �. When combined with Eqs. �19� and �20�, this rota-
tional symmetry further restricts the form of the Green’s
functions. For example, the coefficient of 
̂4 should be an
odd function of k due to Eq. �19�, while it should be an even
function of k because of Eq. �23�. As such, the Green’s func-
tions cannot contain 
̂4 component under these two symme-
try requirements. Moreover, Eq. �23� by itself compels
F1,2,3�k ,�� to be transformed as a vector under the rotation
in the k space,

F��k,�� � c1k� + c3k2k� + ¯ , �24�

with �=1,2 ,3.
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So far, we have imposed several generic symmetries such
as T symmetry and I symmetry on the Green’s function after
the quenched averaged. As a result of this, the Green’s func-
tion is given only in terms of the Dirac matrices. Since these
five Dirac matrices are all anticommuting with one another,
the inverse of the Green’s function can be easily calculated,

ĜR,−1�k,�� � F0�k,��1̂ + �
�=1

5

F��k,��
̂�, �25�

F0 =
F0

F0
2 − ��=1

5
F�

2
, F� = −

F�

F0
2 − ��=1

5
F�

2
. �26�

Correspondingly, the inverse of the bare Green’s function is
given as follows:

Ĝ0
R,−1�k,�� = �� + i��1̂ − �

�=1,2,3
k�
̂� + m
̂5 � �

�=0,¯,5
f�
̂�.

�27�

Based on these simplifications, we will derive in Secs. III
and IV the electronic property of the disordered single copy
of 3+1 Dirac fermion described by Eq. �5�. Before finalizing
this section, however, it would be appropriate to summarize
the engineering dimension of the various quantities intro-
duced in this section. Comparing the impurity Hamiltonian
with the pure Hamiltonian, one can first see that

m,k�,�,f�,F�,vi � �L−1�, F� � �L� , �28�

where L denotes the dimension of a length. Out of this, we
can further figure out the engineering dimension of � jm,

� jm � �L� , �29�

by requiring P�v� in Eq. �11� to be dimensionless.

III. SELF-CONSISTENT BORN APPROXIMATION

The scB approximation simply equates the right-hand
sides of the following two:

�̂R�k,�� � Ĝ0
R,−1 − ĜR,−1, � �f0 − F0�1̂ + �

�=1

5

�f� − F��
̂�,

�30�

�̂R�k,�� = �00	 d3k�ĜR�k�,��

= �00	
0��k���

d3k��F0�k�,��
̂0 + F5�k�,��
̂5� .

�31�

We have already omitted those terms proportional to
F1,2,3,4�k� ,�� in the integrand of Eq. �31� since they are odd
functions of k�. Comparing the coefficients of each 
 matrix
in Eqs. �30� and �31�, we can make the closed coupled equa-
tion for F0 and F5,

�00	
0��k���

d3k
F0

F0
2 − F5

2 − k2 = f0 − F0, �32�

− �00	
0��k���

d3k
F5

F0
2 − F5

2 − k2 = f5 − F5 �33�

by the use of Eq. �26�. We have already used the following
relations also:

F1,2,3 � f1,2,3 = − k1,2,3, F4 � f4 � 0. �34�

These integral equations in Eqs. �32� and �33� clearly de-
pend on the ultraviolet cutoff �. Thus, rescaling the momen-
tum by this cutoff �, let us introduce the dimensionless
quantities, instead of F�, f�, and �00. Equations �28� and
�29� indicate that they should be rescaled in the following
way:

F0,5 → F0,5 � F0,5�−1, �35�

f0,5 → f0,5 � f0,5�−1, �36�

�00 → � � 2��00� . �37�

The factor 2� in the definition of � is just for later conve-
nience. In terms of these dimensionless quantities, the above
coupled nonlinear equations become

�1 + �G�F0 = f0 � � � i� , �38�

�1 − �G�F5 = f5 � m , �39�

where � and m in the right-hand side are supposed to be also
normalized by �−1. G used in the left-hand side was also
made dimensionless,

G � 2	
0�k�1

1

�a + ib�2 − k2k2dk , �40�

�a + ib�2 � F0
2 − F5

2. �41�

Equations �38�–�41� thus determine F0 and F5 as a function
of their bare values: f0 and f5. F� thus obtained should be by
definition much smaller than the “ultraviolet cutoff” 1,

F� � 1. �42�

This also leads to a ,b�1. In the following, we will fre-
quently take full advantage of their smallness, which is al-
ways self-consistently verified later �see below�.

In Sec. III A, we will present the solution of this coupled
equation for general � and m. Before doing this, however, it
would be appropriate to express the imaginary part and real
part of G in terms of a and b so that one can roughly esti-
mate these two quantities in small a and b. The real part and
the imaginary part of G read as follows:

Re G � − 2 −
a

2
log� �1 − a�2 + b2

�1 + a�2 + b2�
+ b�arctan�1 − a

b
� + arctan�1 + a

b
�� , �43�
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Im G � −
b

2
log� �1 − a�2 + b2

�1 + a�2 + b2�
− a�arctan�1 − a

b
� + arctan�1 + a

b
�� . �44�

Observing these two, please notice that the final two terms in
Eqs. �43� and �44�, which are proportional to arctan, are
nothing but the pole contribution. Namely, the limit b→0
reduces them to a finite constant with its sign identical to that
of b, e.g.,

arctan�1 − a

b
� + arctan�1 + a

b
� → � sgn�b� ,

where one should also note that a ,b�1. Bearing these in
mind, one can then evaluate the leading order of Re G and
Im G with respect to small a and b,

Re G = − 2 + ��b� + O�a2� , �45�

Im G = − sgn�b��a + O�ab� . �46�

Namely, the second member of Eq. �45� and the first member
of Eq. �46� are nothing but the pole contributions mentioned
above.

A. Solution for scB equations

1. m=�=0 case

For the warming up, consider first the case with �=m
=0, i.e., the zero-energy state at the critical point. Equations
�38�–�41� have three types of solutions,

�i� F0 = F5 = 0, �47�

�ii� 1 + �G = 0 � F5 = 0, �48�

�iii� 1 − �G = 0 � F0 = 0. �49�

Observing the estimates given in Eqs. �45� and �46�, please
notice that type-�iii� solution cannot be satisfied for ��0
and a ,b�1. Thus, we will ignore this henceforth.

The type-�i� solution is always trivially satisfied. This so-
lution indicates that the zero-energy state is not renormalized
at all by the disorder, F0= f0=0, F5= f5=0. Thus, it describes
the diffusionless zero-energy state.

The type-�ii� solution is a nontrivial solution, which turns
out to describe the diffusive zero-energy state. To see this, let
us begin with the first condition of Eq. �48�, i.e., 1+�G=0.
The imaginary part of this gives Im G=0, which is satisfied
either when a=0 or when b=0 and �a��1 �see Fig. 4�. Since
a ,b�1 as noted earlier, the only physical solution satisfying
Im G=0 is thus a=0. The remaining condition, 1+� Re G
=0, becomes then simple,

b arctan�b−1� = 1 −
1

2�
. �50�

Since F5=0 gives a+ ib=F0, a and b thus obtained stand for
the renormalized chemical potential �̄ and the inverse of the

lifetime �−1, respectively. Accordingly, the type-�ii� solution
simply denotes that the zero-energy state acquires a finite
lifetime �, while its chemical potential is free from renormal-
izations,

�̄ = 0, �−1 arctan��� = 1 −
�c

�
. �51�

Namely, for ���c� 1
2 , �−1 can take a finite value.

For a weak disorder region ����c�, Eq. �51� cannot be
satisfied for any �. Thus, the only solution therein is the
type-�i� trivial solution. On the other hand, both the type-�i�
solution and type-�ii� solution become possible above this
critical disorder strength ����c�. In the next three para-
graphs, we will determine which solution is physically sen-
sible for ���c.

To do this, we will extend these two solutions into a small
but finite � region. Namely, by seeing how this chemical
potential will be renormalized for each case, we will judge
which solution is the physical one for ���c. Recall first that
F5=0 in either case. Thus, a and b correspond to �̄ and �−1,
respectively, so that a and b should be an odd and an even
function of the bare chemical potential �, respectively.

Bearing these in mind, let us extend the type-�i� solution
into a small � region first. Namely, keeping the leading order
in small �, we can evaluate the real part of Eq. �38�,

�1 − 2��a + O��3� = � , �52�

where we used a�O��� and b�O��2�. Thus, the renormal-
ized chemical potential is estimated up to O��� as follows:

FIG. 4. �Color online� Im G as a function of a and b. �a� The
sign of Im G is denoted by “+�−�” at the four regions, i.e., a ,b
�0, a�0�b, b�0�a, and 0�a ,b. Im G is an odd function both
in a and in b. The bold line which runs from �−1,0� to �1,0� denotes
a sort of the branch cut. Namely, Im G jumps from −2�2a to +2�2a
�from b= +0 to b=−0�. �b� A side view plot of Im G only for b
�0. �c� Im G�0 is satisfied either when a=0, or when b=0 and
�a��1.
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�̄ � a =
�

1 − 2�
+ O��3� , �53�

while b will be determined up to O��2� from the imaginary
part of Eq. �38�,

�−1 � b =
��

�1 − 2��3�2 + O��4� . �54�

This solution indicates that the negative eigenenergy state
and the positive eigenenergy state are inverted energetically
for ���c: sign �̄=−sign �. This is, however, clearly un-
physical at least for small �.

When the type-�ii� solution is extended into a small �
region, a similar algebra gives us the following expression
for the real part of Eq. �38� up to O���:

�1 − 2��a + 4��−1 arctan���a = � . �55�

In this equation, we have already made implicit those contri-
butions proportional to O��3� and O��−2�� while keeping
those proportional to O��−1�� explicit. Please also note that
we have used a�O��� and b=�−1+O��2�. Namely, contrary
to the type-�i� solution, b converges to a nonzero �−1 at the
leading order in small �. As a result of this, Eq. �55� has
acquired an additional O��� term, i.e., 4��−1 arctan��� ·a,
which was absent in Eq. �52�. This additional term makes the
sign of �̄ to be same as that of �. Namely, by the use of
1–2�=−2��−1 arctan���+O��2�, Eq. �55� leads us to

�2� − 1�a + O��3� = � . �56�

Out of this, one can evaluate the renormalized chemical po-
tential up to O��� as follows:

�̄ � a =
�

2� − 1
+ O��3� , �57�

whose sign is clearly same as that of the bare one for �
��c: sgn �̄=sgn �. Observing these two distinct behaviors
for the finite � region, i.e., Eqs. �53� and �57�, we conclude
that for ���c, the type-�ii� solution is the physically sen-
sible solution.

To summarize so far, the physical solutions obtained at
m=�=0 are twofold, depending on the disorder strength �.
When ���c=1 /2, the type-�i� trivial solution is the only
possible solution,

�i� F0 = F5 = 0 for � � �c. �58�

This means that the electronic state at the zero energy is free
from the disorder up to a certain critical disorder strength.

On the other hand, when its strength exceeds this critical
value, i.e., ���c, the type-�ii� solution should be adopted,

�ii� F0 = i�−1, F5 = 0 for � � �c. �59�

This solution means that the electronic state at the zero en-
ergy acquires a finite lifetime � defined by Eq. �51�.

2. �=0 and finite m case

Let us introduce a finite topological mass m into Eq. �58�
and �59�, respectively, with the chemical potential � being

still zero. We will first argue that the solution of Eqs.
�38�–�41� in the presence of the finite mass is uniquely de-
termined for ���c. Such a solution reads

F0 = 0, F5 = m̄ , �60�

where m̄ is given as a function of the bare mass,

m̄�1 + 2� − 2�m̄ arctan�m̄−1�� = m . �61�

A typical behavior of m̄ as a function of the bare mass is
depicted in Fig. 5�b�.

To see that Eqs. �60� and �61� is the only possible solution
for ���c, let us begin with the real part of 1+�G appearing
in Eq. �38�. In the case of ���c, it is always positive defi-
nite for any a�1. As such, we must take F0 to be zero, to
satisfy Eq. �38�. This leads to F5=b− ia. Using this, consider
next the imaginary part of Eq. �39�,

�1 − � Re G� · a + � Im G · b = 0. �62�

Observing the leading-order estimates of Re G and Im G,
i.e., Eqs. �45� and �46�, one can further see that Eq. �62�

FIG. 5. �Color online� �a� A schematic phase diagram at �=0.
The white region corresponds to the incompressible phase, where
no finite DOS exists at �=0. In the compressible phase �blue
shaded region� a finite DOS exists at �=0, i.e., Eq. �64�. �b� The
renormalized mass m̄ as a function of the bare mass m for �
=0.25��c. �c� m̄ as a function of m for �=0.75��c. There exists
the critical value of the bare mass m, below which m̄=m /2, and
above which m̄ is determined by Eq. �61�.
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uniquely leads to a=0. The remaining condition, i.e., the real
part of Eq. �39�, then becomes simple,

�1 − � Re G� · b = �1 + 2� − 2�b arctan�b−1�� · b = m .

Now that �F0 ,F5���0,b�, this equation is nothing but Eq.
�61� when b replaced by m̄.

Let us next consider the case of ���c. The solution of
Eqs. �38�–�41� in this case is twofold; we have a certain
critical mass value mc, which is given as a function of �,

mc � 2�−1, �−1 arctan��� � 1 −
�c

�
. �63�

When the topological mass is less than this critical value
�m�mc�, the solution of Eqs. �38�–�41� becomes

F0 = + i��−2 − m̄2, F5 = m̄ �
m

2
, �64�

where � was already defined in Eq. �63�. On the other hand,
when the topological mass exceeds this critical value �m
�mc�, the solution becomes Eqs. �60� and �61� again.

To see that Eq. �64� is the solution of Eqs. �38�–�41� for
���c and m�mc, take 1+�G�0 first so that Eq. �38� is
satisfied. By the use of the same arguments described above
Eq. �50�, this immediately gives us �a ,b���0,�−1�, with �
being defined by Eq. �51�. Since 1−�G�2, Eq. �39� leads to
F5�m /2. Thus, using these two things, we obtain F0 out of
Eq. �41�, which is nothing but Eq. �64�. When m exceeds
mc�2�−1, Eq. �64� becomes an unphysical solution in a
similar way as the type-�i� solution in Sec. III A 1 did for
���c,

F0 = � �m̄2 − �−2, F5 = m̄ �
m

2
.

Instead of this, it turns out that we should adopt the other
solution for m�mc, i.e., Eqs. �60� and �61�.

A typical behavior of m̄ in the case of ���c is depicted
in Fig. 5�c�, where these two solutions, i.e., Eq. �64� and Eqs.
�60� and �61�, are indeed connected continuously at m=mc.
Since Eq. �64� always supports a finite density of state
�DOS�, we can regard that the compressible phase extends
over ���c and m�mc. On the other hand, Eqs. �60� and
�61� do not support any finite DOS. As such, we can regard
that an incompressible phase extends over ���c or m�mc
�Fig. 5�a��.

3. General � and m case

For finite � and m, both F0 and F5 are in general nonzero
and we cannot solve Eqs. �38�–�41� analytically. Accord-
ingly, we have numerically solved the coupled equations
with respect to a and b so that F0 and F5 are derived in terms
of � and m.

Before describing the numerical solution, let us first argue
about the generic features of such solutions. Notice first that
Re G is an even function of both a and b, while Im G is an
odd function of both a and b. Thus the following two should
be degenerate at any given � and m as the solutions of Eqs.
�38�–�41�:

�F0�,F0�,F5�,F5��, �F0�,− F0�,F5�,− F5�� , �65�

where Fj� and Fj� are the real and imaginary parts of Fj.
Namely, these two solutions correspond to the retarded
Green’s function and advanced one, respectively.

The above two solutions at given m and � can be further
extended into the other three quadrants, i.e., �−m ,��, �m ,
−��, and �−m ,−��,

�F0�, � F0�,F5�, � F5���m,�

= �F0�, � F0�,− F5�, � F5���−m,�

= �− F0�, � F0�,F5�, � F5���m,−�

= �− F0�, � F0�,− F5�, � F5���−m,−�,

where the upper sign corresponds to the retarded function for
any of these four regions by construction �Fig. 6�. Observing
this, please notice that both F5� and F5� vanish at m=0, which
is indeed the case with Sec. III A 1. Similarly, one can also
see that F0� and F5� should vanish at �=0 for any m. Both
Eqs. �60� and �61� and Eq. �64� actually observe this.

These considerations are also consistent with the numeri-
cal solution. In Figs. 7 and 8, we demonstrated numerically
how F0 and F5 behave as a function of � and m �only for the
first quadrant, m�0 and ��0�, at specific values of �. Fig-
ure 7 is for ���c, while Fig. 8 is for ���c. In the limit of
�→0, F0 and F5 in these two figures continuously connect
with the two analytic solutions previously derived, i.e., Eqs.
�60� and �61� and Eq. �64�, respectively.

We have also checked that whenever F0�=F5��0, F5� is
always greater than F0�, i.e., a2−b2�0. As such, the spectral
function is identically zero, provided that both F0� and F5�
vanish. Such a phase should be regarded as an incompress-
ible phase having no bound states. On the one hand, when
either F0� or F5� is finite, the spectral weight is finite and such
a phase is compressible.

By seeing whether F0� and F5� totally vanishes or not, we
have determined the phase diagram in the �-m-� space. The
phase boundaries between the compressible phase and the
incompressible phase thus obtained are schematically drawn

FIG. 6. F0 and F5 as a function of m and �. Fj� and Fj� are the
real and imaginary parts of a function Fj. At any parameter point,
we generally have at least two solutions, which correspond to the
retarded Green’s function and advanced one.
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in Fig. 9, while accurately specified in Fig. 10. For ���c,
we have a finite critical mass value, i.e., mc, below which a
compressible phase extends even at �=0 �Fig. 9�c� and Figs.
10�e� and 10�f��. This critical value goes to zero when � goes
to �c from above �Fig. 10�d��. For ���c, we have a com-
pressible region not in the �=0 region anymore, but still in
the nonzero � region �Fig. 9�b� and Figs. 10�a�–10�c��. The
slope of the phase boundary in ���c, given as follows:

� d�c

dmc
�

�c=mc=0
�

1 − 2�

1 + 2�
,

increases when the disorder strength decreases �Figs.
10�a�–10�c��.

IV. DIFFUSON AND QUANTUM CONDUCTIVITY
CORRECTION

In Sec. III, we have derived the one-point Green’s func-
tion within the self-consistent Born approximation. In the 3D
parameter space spanned by �, m, and �, we have observed
that the topological insulator and an ordinary insulator are
always intervened by the compressible phase. The topologi-
cal insulator supports a single 2+1 surface massless Dirac
fermion on each boundary, while an ordinary insulator does
not. As such, we expect that this intervening phase is com-

posed by those wave functions which extend over an entire
bulk �see Sec. I for its reason�.

As the first step to understand the nature of this compress-
ible phase especially for ���c, we will calculate the series

sum of the ladder-type diagram 	̂d�q ,
� �see Fig. 11�a��,
only to see that the diffuson thus obtained consists of two
quasidegenerate low-energy modes,

	̂d�q,
� �
1


 + iDq2 	̂1
d +

1


 + iDq2 + i�topo
−1 	̂2

d + ¯ �66�

with �topo
−1 �m2. The information of the charge diffusion is

solely encoded into the first term, which thus always has the
diffusion pole structure. On the other hand, the second term
becomes massless only at m=0 �but generic ��, while it
suffers from the finite infrared cutoff �topo

−1 for the finite m
case. We will explicitly see that the second term is actually
associated with the parity degree of freedom, which, at m
=0, becomes a conserved quantity of our effective con-
tinuum model, i.e., Eq. �5�.

When the hole line of 	̂d�q ,
� is time reversed, these
two-mode features are translated into the backward-
scattering channel associated with the “fan”-type diagrams

Ûcoop�k+k� ,
� �see Fig. 11�b��. Namely, for small 
 and k
+k�, it is also dominated by two quasidegenerate dominant
contributions,
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FIG. 7. �Color online� �=0.48 ; �a� The contour plot of F0� as a
function of ��0 and m�0. The value of F0� decreases toward the
dark region, and becomes zero at �=0. The contour interval is
1.2�10−3. �b� The contour plot of F0�. The value of F0� decreases
toward the darker region, and becomes zero at the incompressible
phase �yellow region�. The contour interval is 0.6�10−3. �c� The
contour plot of F5�. F5� decreases toward the darker region, and
becomes zero at m=0. The contour interval is 4.0�10−3. �d� The
contour plot of F5�. F5� increases toward the darker region and be-
comes zero at �=0, m=0 and the incompressible phase �yellow
region�. The contour interval is −1.2�10−5.
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FIG. 8. �Color online� �=0.52 ; �a� The contour plot of F0� as a
function of ��0 and m�0. The value of F0� decreases toward the
dark region, and becomes zero at �=0. The contour interval is
1.8�10−3. �b� The contour plot of F0�. The value of F0� decreases
toward the darker region, and becomes zero at the incompressible
phase �yellow region�. The contour interval is 1.8�10−3. �c� The
contour plot of F5�. F5� decreases toward the darker region, and
becomes zero at m=0. The contour interval is 4.0�10−3. �d� The
contour plot of F5�. F5� increases toward the darker region and be-
comes zero at �=0, m=0 and the incompressible phase �yellow
region�. The contour interval is −3.0�10−5.
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Ûcoop�k + k�,
� �
1


 + iD�k + k��2Û1
c

+
1


 + iD�k + k��2 + i�topo
−1 Û2

c + ¯ .

�67�

One is obtained from the charge mode channel, i.e., 	1
d, with

its hole line time reversed, while the other is from the parity

mode channel, 	̂2
d. In this section, we will further see that

both of these two give rise to the same amplitude of the
anti-weak-localization �AWL� correction to the electric con-
ductivity at m=0. In the presence of the finite topological
mass m, however, the second term in Eq. �67� becomes less
dominant because of the finite infrared cutoff �topo

−1 . Namely,
half of the AWL correction becomes ineffective on increas-
ing m �“quantum correction doubling”�.

Using the knowledge obtained in this section, we will
propose in Sec. IV the possible microscopic mechanism of
how the bulk-critical region emerges between the topological
insulator and an ordinary insulator.

This section is organized as follows. In Sec. IV A, we will
sum up the entire ladder-type diagram in the particle-hole
channel, using the one-point Green’s function obtained in the
self-consistent Born calculation,

ĜR,−1�k;�,m� = F01̂ − k�
̂� + F5
̂5, �68�

FIG. 9. �Color online� �a� A schematic phase diagram in the
�-m-� space. Either F0� or F5� always remains finite in the com-
pressible phase �blue�, while both of them become zero at the re-
maining parameter region �incompressible phase�, which is further
divided into an ordinary insulator �red� and the topological insulator
�yellow�. �b� A schematic phase diagram in �-m plane for ���c,
and �c� that for ���c. These correspond to the numerical results
shown in Fig. 10.

FIG. 10. �Color online� Phase boundaries between the com-
pressible phase and the incompressible �gapped� phase, in the �-m
plane, at several values of �. �a� �=0.0, �b� �=0.1, �c� �=0.4, �d�
�=�c=0.5, �e� �=0.6, and �f� �=0.7.

(a)

+ + + ….

(b)

αΓ
d

(q,ω) =

k’ +q/2,β

k-q/2,δ k’-q/2,γ

U
coop

(k+k’,ω) =

αβ,γδ

αβ,γδ

k+q/2,α

k’ +q/2,βk+q/2,α

+ + +….+

q ,β

k-q/2,δ k’-q/2,γ

q ,

FIG. 11. �Color online� �a� A series sum of the ladder-type dia-
grams 	��,
�

d �q ,
�, �b� A series sum of the “fan”-type diagrams

Û��,
�
coop �k+k� ,
�����1,
1

�1̂ � ŝy�

1
	̂��,�1
1

d �k+k� ,
��1̂ � ŝy��1�.
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ĜA,−1�k;�,m� = F0
�1̂ − k�
̂� + F5

�
̂5, �69�

with F0� �̄+ i�−1 and F5�m. Such a summand should con-
tain those contributions which diverge at 
=0 and q=0. We
will identify this diverging contribution in Sec. IV B, only to

see that 	̂d�q ,
� contain two quasidegenerate dominant con-

tributions, as in Eq. �66�. Explicit expressions for 	̂1
d, 	̂2

d, and
�topo

−1 will be therefore given here. By calculating the parity-
density correlation function, we will show in Sec. IV C that

	̂2
d solely participates in the parity diffusion mode. Finally,

the quantum conductivity corrections arising from these two
terms are calculated in Sec. IV D, based on the Kubo for-
mula.

Comparing Eqs. �53� and �54� with Eqs. �57� and �59�,
notice also that the weak-localization �WL� calculation in
this section becomes a controlled analysis only for the weak
disorder region, ���c. Namely, the renormalized chemical
potential �̄ and the lifetime �−1 determined in Sec. III guar-
antee a sufficiently small 1 / �̄� around ��0 only for this
weak disorder region,

�̄� =
1

��

��c − ��2

�c
2

1

�
+ O��� for � � �c. �70�

For the strong disorder region, however, 1 / �̄� readily di-
verges around the zero-energy region,

�̄� =
��c

2�
� + O��3� for � � �c. �71�

Thus, the noncrossing approximation employed in Sec. III
and the corresponding WL calculation described below ac-
quire the small coupling constant 1

�̄�
, only for ���c, but, for

���c, they generally do not. Bearing in mind especially this
strong disorder region, we will demonstrate in Appendix B
the mode-mode coupling calculation, which is complemen-
tary to the weak-localization studies described in this section.
Without resorting to the Kubo formula, this theoretical
framework gives us the gap equation for the diffusion con-
stant, taking into account the interference effects due to the
Cooperon term. The basic feature, which we will observe in
this section, such as the quantum correction doubling, are
also confirmed by this analysis �see Appendix B�.

A. Ladder-type diagrams in the particle-hole channel

For clarity of the following description, let us first define
a tensor composed by two 4�4 matrices,

Â � Âr � Âa.

The former 4�4 matrix Âr is for the particle �retarded� line,

while the other, i.e., Âa, is for the hole �advance� line.
Throughout this section, we distinguish this “�” mark from
the “�” mark, latter of which separates the spin space and
sublattice space. The product of two tensors is defined as
follows:

Â · B̂ � ÂrB̂r � B̂aÂa. �72�

Note here that the order of the product in the hole line is
reversed, compared with that of the left-hand side. Under this
algebra, the series sum of the ladder diagram in the particle-
hole channel, i.e., Figure 11�a�, is just the inverse of the
following tensor:

�1̂ − ��̂�q,
����,
� � 
1̂ � 1̂ − ��
k

ĜR�0+� � ĜA�0−��
��,
�

� ����
� − ��
k

Ĝ��
R �0+�Ĝ
�

A �0−� , �73�

with �0����k�
q
2 ,��



2 �. Namely, the following identity

can be readily checked:

�1̂ − ��̂�q,
����1,�1�	�1�,
�1

d �q,
� � ����
�. �74�

Notice also that we have already normalized the momentum
by the ultraviolet cutoff � as in Eqs. �35�–�37� so that �
�2��00� and �k �2�0

1k2dk. This notation also holds true
for Eqs. �78�, �92�, and �93�.

For simplicity of the explanation, we will calculate the
inverse of Eq. �73�, with q taken to be zero from the begin-
ning �see also the description around Eq. �99��. Such an in-
verse diverges if 
=0, while it does not for general 
. When
q taken to be zero, the polarization part becomes simple,

�1̂ − ��̂�q � 0,
����,
� � a01̂ + a1T̂1 + a2T̂2 + a3T̂3 + a4T̂4,

�75�

T1 � �
�=1

3


̂� � 
̂�, T̂2 � 1̂ � 
̂5, �76�

T̂3 � 
̂5 � 1̂, T̂4 � 
̂5 � 
̂5. �77�

Namely, it is just a linear combination of the five tensors
with their coefficients defined as follows:

�a0,a1,a2,a3,a4� � 
1 − ��
k

F0+F0−
�

�k2 − F0+
2 + F5+

2 ��k2 − �F0−
� �2 + �F5−

� �2�
, − ��

k

kx
2

�k2 − F0+
2 + F5+

2 ��k2 − �F0−
� �2 + �F5−

� �2�
,

��
k

F0+F5−
�

�k2 − F0+
2 + F5+

2 ��k2 − �F0−
� �2 + �F5−

� �2�
, ��

k

F5+F0−
�

�k2 − F0+
2 + F5+

2 ��k2 − �F0−
� �2 + �F5−

� �2�
,

− ��
k

F5+F5−
�

�k2 − F0+
2 + F5+

2 ��k2 − �F0−
� �2 + �F5−

� �2�� . �78�
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The � subscripts on Fi above mean that the argument of
Fi��� is shifted by �



2 ,

Fi� � Fi�� �



2
� .

As such, a0, a1, and a4 become real valued at 
=0, while a2
and a3 become complex conjugate with each other,

a0,1,4�
=0
� = a0,1,4�
=0, a2�
=0

� = a3�
=0. �79�

One can evaluate the signs of the former three real-valued
quantities by noting that F� is much smaller than the ultra-
violet cutoff. They read

a0�
=0 � 0, a1�
=0 � 0, a4�
=0 � 0. �80�

Notice also that all the integrands for a2, a3, and a4 contain
F5, which is proportional to the topological mass �see Sec.
III�. Thus these three quantities vanish when the topological
mass m is zero,

a4 � O�m2�, a2,3 � O�m� . �81�

The inverse of Eq. �75� also becomes a linear combination
of a finite number of tensors composed of 
 matrices because
of the cyclic nature; 
1
2
3
4
5�−
0,

	̂d�q = 0,
� � �01̂ + �1T̂1 + �2T̂2 + �3T̂3 + �4T̂4 + �5Ŝ1

+ �6Ŝ2 + �7T̂4 · T̂1 + �8T̂2 · Ŝ1 + �9T̂3 · Ŝ1 + �10T̂4 · Ŝ1

+ �11T̂4 · Ŝ2, �82�

where two additional tensors are introduced in the following
way:

Ŝ1 � 
̂1
̂2 � 
̂2
̂1 + 
̂2
̂3 � 
̂3
̂2 + 
̂3
̂1 � 
̂3
̂1,

Ŝ2 � 
̂1
̂2
̂3 � 
̂3
̂2
̂1. �83�

After lengthy algebra, one can express its 12 coefficients � j
in terms of those of Eq. �75� as follows:

�
�0

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

� �
1

8�
− 3�a04 − �a04 − 3a04 − a04

a1 3a1 a1 3a1

3�a23 �a23 3a23 a23

− 3�a23 − �a23 3a23 a23

3�a04 �a04 − 3a04 − a04

�a04 − �a04 a04 − a04

− 3a1 3a1 − 3a1 3a1

− a1 − 3a1 a1 3a1

− �a23 �a23 − a23 a23

�a23 − �a23 − a23 a23

− �a04 �a04 a04 − a04

�� f1

f3

f2

f4

� ,

�84�

�11 � − 3a1
3�f4

−1 + f1
−1�f1f2�− f3 + f4� , �85�

where a04, �a04, a23, �a23, and f1,2,3,4 are defined in terms of
a0, a1, . . ., and a4,

�a23 � a2 − a3, �a04 � a0 − a4, �86�

a23 � a2 + a3, a04 � a0 + a4, �87�

f1 �
1

a1
2 + ��a04 + �a23��− �a04 + �a23�

, �88�

f2 �
1

a1
2 + �− a04 + a23��a04 + a23�

, �89�

f3 �
1

9a1
2 + ��a04 + �a23��− �a04 + �a23�

, �90�

f4 �
1

9a1
2 + �− a04 + a23��a04 + a23�

. �91�

B. Identification of the diffusion pole

Using Eqs. �68� and �69�, we have summed up the ladder-
type diagram in the particle-hole channel, only to obtain Eq.
�82�. The coefficients � j appearing in Eq. �82� are expressed
in terms of F0 and F5, by way of Eqs. �84�–�91� and Eq. �78�.
When the self-consistent Born �scB� solution is used for F0
and F5, at least one of these � j is expected to have a diffu-
sion pole structure. On the one hand, none of aj defined in
Eq. �78� does not diverge at 
=0. As such, some of f j

−1

should be zero at 
=0. In this section, we will identify
which f j diverges at small 
. This also determines the
asymptotic tensor form of the diffuson in the small 
 limit.

To do this, let us first start from the self-consistent Born
equations of F0 and F5, i.e., Equations �38�–�41�, or equiva-
lently, begin with the following two:

�F0 − F5� − ��
k

�F0 + F5�
k2 − �F0

2 − F5
2�

= � − m + i� , �92�

�F0 + F5� − ��
k

�F0 − F5�
k2 − �F0

2 − F5
2�

= � + m + i� . �93�

Then, subtracting Eqs. �92� and �93� by their respective com-
plex conjugates, we can readily obtain

�a04 − a23 3a1

3a1 a04 + a23
�

�
=0
�F0� − F5�

F0� + F5�
� = �0

0
� , �94�

where Eq. �87� and Eq. �78� were used. This equation indi-
cates that the determinant of the 2�2 matrix in the left-hand
side should be zero, provided that either F0� or F5� is nonzero.
Any compressible phase having a finite density of state sup-
ports F0�

2+F5�
2�0. As such, any scB solution in the com-

pressible phase always guarantees the following identity:

�9a1
2 − a04

2 + a23
2 ��
=0 � 0. �95�
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Since a1 defined in Eq. �78� is negative definite at 
=0,
more accurately, Eq. �95� should be replaced by

3a1�
=0 = − ���a04
2 − a23

2 ��
=0. �96�

Observing Eq. �91�, notice that this is actually identical to
the following:

�f4
−1��
=0 � 0. �97�

Namely, f4 carries the diffusion pole.
f1, f2, and f3 generally cannot have any pole structure for

the small 
 region. To see this explicitly, note first that when
generalized into the finite q case, f4 takes the following
asymptotic form:

f4�
� �
1

a0�

1

i

→ f4�q,
� �

1

a0�

1

i
 − D0q2 . �98�

In the right-hand side, we have replaced i
 by i
−D0q2 with
the bare diffusion constant D0. By retaining the subleading
contribution in small q appearing in Eq. �73�, one can explic-
itly calculate its leading-order expression in the large �̄�
limit,

D0 �
1

6

�c − �

�c + �
� , �99�

which is positive definite for ���c. Similarly, we can obtain
the asymptotic form of f1, f2, and f3 at 
 ,q�0,

f1 �
1

a0�

1

i
 − D1q2 − �1
−1 , �100�

f2 �
1

a0�

1

i
 − D2q2 − �2
−1 , �101�

f3 �
1

a0�

1

i
 − Dq2 − �topo
−1 . �102�

�1
−1 and �2

−1 above are positive definite,

�1
−1 � �2

−1 + �topo
−1 � 0,

�2
−1 � �−1 � 
8a1

2

a0
�

�
=0
� 0, �103�

while �topo
−1 being positive semidefinite;

�topo
−1 � �−1 � 
4�− a0a4 + a2a3�

a0
�

�
=0
� 0. �104�

The two inequalities in Eq. �103� and Eq. �104� are indeed
supported by Eq. �79� and Eqs. �79� and �80�, respectively.
These expressions indicate that f1, f2, and f3 always experi-
ence the infrared cutoff for the low-energy and long-
wavelength region.

Comparing Eq. �104� with Eq. �81�, notice also that �topo
−1

reduces to zero in the massless case, �topo
−1 �m2, since a2, a3,

and a4 being zero. As such, f3 acquires a same diffusion pole
as f4 does in the absence of the topological mass. Meanwhile
f1 and f2 always suffer from the �relatively large� finite in-
frared cutoff �2

−1, irrespectively of the topological mass term.
Thus, we will retain in Eq. �84� only those terms propor-
tional to f3 and f4. Based on the same spirit, we will also
replace Eq. �85� by its leading-order contribution in small 

and q,

�11 �
3a1

8
�− f3 + f4� , �105�

and use the following asymptotic expressions for
��0 , ¯ ,�11�,

��0,�4,�5,�10� �
�a04�
=0

8
f3�− 1,1,− 1,1�

−
a04�
=0

8
f4�1,1,1,1� ,

��1,�6,�7,�11� �
3a1�
=0

8
f3�1,1,− 1,− 1�

+
3a1�
=0

8
f4�1,1,1,1� ,

��2,�3,�8,�9� �
�a23�
=0

8
f3�1,− 1,1,− 1�

+
a23�
=0

8
f4�1,1,1,1� .

With these equations, the asymptotic form of the diffuson
in small 
 and q will be derived out of Eq. �82�. It consists of
the two quasidegenerate dominant contributions,

	̂d�q,
� �
f4

8
	̂1

d +
f3

8
	̂2

d, �106�

where the two 
-, q-free tensors are given as follows:

	̂1
d � �− a04 3a1 a23 ��
=0 · � �1̂ + T̂4� · �1̂ + Ŝ1�

�1̂ + T̂4� · �T̂1 + Ŝ2�

�T̂2 + T̂3� · �1̂ + Ŝ1�
� ,

�107�

	̂2
d � �− �a04 3a1 �a23 ��
=0 · � �1̂ − T̂4� · �1̂ + Ŝ1�

�1̂ − T̂4� · �T̂1 + Ŝ2�

�T̂2 − T̂3� · �1̂ + Ŝ1�
� .

�108�
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C. Parity diffusion mode

To capture the physical meanings of the two members in
Eq. �106�, notice first that in the absence of the topological
mass m, our Hamiltonian, i.e., Eq. �5� with the chemical-
potential-type disorder, becomes invariant under the follow-
ing U�1� transformation:

ei ��†�r�
̂45��r� · Ĥ · e−i ��†�r�
̂45��r� = Ĥ , �109�

irrespectively of the strength of the disorder. As a result, each
ensemble at m=0 acquires another conserved charge,
�†�r�
̂45��r�, which is the parity-density degree of freedom
�DOF� �see Table II�. Observing this U�1� symmetry, we can

then expect that the diffuson 	̂d�q ,
� calculated above
should consist of two diffusive modes at m=0: One describes
the usual charge diffusion and the other is for the diffusion of
this parity density. These two physical modes actually corre-
spond to the first term and the second term in Eq. �106�. In
fact, the parity density becomes nonconserved in the pres-
ence of finite m, which is consistent with the finite infrared
cutoff �topo

−1 �m2 appearing only in f3 �see Eqs. �102� and
�98��.

To uphold this consideration more directly, one can also
calculate the density correlation function and parity-density
correlation function at m=0,

�0�q,
� � �
k,k�,�,�

!��,���k,k�;q,
� ,

�45� �q,
� � �̄ �
̂45���!��,
��k,k�;q,
��
̂45��
,

where !̂�k ,k� ;q ,
� stands for the response function �see Eq.
�B2� for its definition�. By noting that this response function
for small q and 
 is dominated by the diffuson,

!��,
��k,k�;q,
� � −
�

2�i
Ĝ��1

R �k+,�+�Ĝ�1�
A �k−,�−�

��	̂d�q,
���1�1,
1�1
Ĝ�1�

R �k+�,�+�

�Ĝ

1

A �k−�,�−� , �110�

one can explicitly see that the two terms appearing in Eq.
�106� actually contribute the density correlation and parity-
density correlation separately,

��0�q,
�,�45� �q,
�� � −
8ia0

�
�f4, f3� . �111�

D. Cooperon and the quantum conductivity correction

When the hole lines being time reversed, Eq. �106� will be
transcribed into the two quasidegenerate dominant contribu-
tions to the series sum of the fan-type diagrams �see Fig.
11�b��,

Ûcoop�k + k�,
� =
�

8
�f4Û1

c + f3Û2
c��q→k+k�, �112�

where the 
-, q-free tensors Û1,2
c are derived out of Eqs.

�107� and �108�, respectively,

Û1
c � �− a04 3a1 a23 ��
=0 · � �1̂ + T̂4� · �1̂ − Ŝ1�

�1̂ − T̂4� · �− T̂1 + Ŝ2�

�T̂2 + T̂3� · �1̂ − Ŝ1�
� ,

�113�

Û2
c � �− �a04 3a1 �a23 ��
=0 · � �1̂ − T̂4� · �1̂ − Ŝ1�

�1̂ + T̂4� · �− T̂1 + Ŝ2�

�T̂2 − T̂3� · �1̂ − Ŝ1�
� .

�114�

Substituting these two Cooperon terms into the current-
current correlation function, we can explicitly show that the
two members in Eq. �112� lead the same magnitude of the
anti-weak-localization �AWL� behavior at the critical point
�m=0�,

�
L−1��k+k���l−1

�f4

8 �
k

�ĜA�k,�� · 
̂1 · ĜR�k,�����Û1,��,
�
c �ĜR�− k,�� · 
̂1 · ĜA�− k,����


= �
. . .

�f4

8 �
k

�ĜA�k,�� · 
̂1 · ĜR�k,�����Û2,��,
�
c �ĜR�− k,�� · 
̂1 · ĜA�− k,����


=
�

8

1

D0�
�
. . .

1

�k + k��2�
k

�ĜA�k,�� · 
̂1 · ĜR�k,������1̂ − Ŝ1 − T̂1 + Ŝ2���,
��ĜR�− k,�� · 
̂1 · ĜA�− k,����


= c�l−1 − L−1� �115�
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with c=16� · �1+ �
�c

� being positive definite. �We used a2

=a3=a4=0 and −3a1=a0 in Eqs. �113� and �114��. When the
finite topological mass m is introduced, however, the second
member of Eq. �112� becomes suppressed since the infrared
divergence of f3 becomes truncated by finite �topo

−1 . As a re-
sult, one half of the AWL correction becomes ineffective in
the presence of finite m �quantum correction doubling�.

V. DISCUSSION

A. Summary of our findings

In this paper, we have studied the effects of the time-
reversal invariant disorder on the quantum spin Hall
system.25–29 We have especially focused on the quantum
critical point �QCP� which intervenes the 3D topological in-
sulator �TI� and a 3D ordinary insulator. The topological in-
sulator supports a single 2+1 massless surface Dirac fermion
for each boundary, while an ordinary insulator does not have
any. As such, the bulk-wave function in those parameter re-
gions �or point�, which intervene these two insulating phases,
should be extended so as to mediate two opposite surfaces.
Such extended bulk states are stable against T-invariant dis-
orders, as far as each surface state in the TI phase is stable.
In fact, Nomura et al.30 and Bardarson et al.31 recently cal-
culated the � function numerically, and demonstrated that the
single copy of the 2+1 massless Dirac fermion is topologi-
cally stable against the T-invariant disorders. This observa-
tion strongly indicates that there always exists delocalized
�bulk-critical� region between the 3D topological insulator
phase and a 3D ordinary insulator phase.

To uncover the nature of this peculiar quantum critical
point �or region�, we have studied the disorder effect on its
minimal model, i.e., single 3+1 Dirac fermion. As a basis for
this, we first studied in Sec. III how the chemical-potential-
type disorder brings about a finite lifetime of the zero-energy
wave function. We then observed that there exists a certain
critical disorder strength, above which the DOS at the zero
energy becomes finite �see Eq. �51��.

When the finite topological mass is introduced, a system
eventually enters either the TI or an ordinary insulator, de-
pending on the sign of the topological mass. In Sec. III, we
studied how this topological mass is renormalized by the
chemical-potential-type disorder within the self-consistent
Born approximation. By doing this, we have determined the
phase boundary between the compressible phase and the
gapped phase �see Figs. 9 and 10�.

To further infer the low-energy structure in this compress-
ible phase, we have derived in Sec. IV the diffuson, Coop-
eron, and the weak-localization �WL� correction to the elec-
tric conductivity. We then observed that the charge diffusion
mode and parity diffusion mode dominate the diffuson �see
Eq. �106��; the charge channel always carries the diffusion
pole structure, while the parity-density channel becomes
massless only in the absence of the topological mass. In the
presence of the finite topological mass m, it generally suffers
from the infrared cutoff �topo

−1 �m2.
Corresponding to this feature in the diffuson, the Coop-

eron is also composed of two quasidegenerate dominant con-

tributions �see Eqs. �112�–�114��. In the zero topological
mass limit, these two contributions bring about the same
magnitude of the anti-weak-localization �AWL� correction
with each other. When the finite topological mass m is intro-
duced, however, that from the parity-density channel be-
comes truncated by the finite infrared cutoff �topo

−1 . As such,
one half of the AWL correction becomes ineffective. As a
result, on increasing m, the AWL correction exhibits a cross-
over into one half of its original value �quantum correction
doubling�.

B. Levitation and pair-annihilation phenomena

Let us discuss open issues in the 3D Z2 QSH system in the
viewpoint of our findings. As a tightly related topic to the
stability of the QCP, the levitation and pair-annihilations
phenomena of the extended states32 were recently observed
in the 2D Z2 quantum spin Hall systems by Onoda et al.25

They numerically studied the disorder effect on the Kane-
Mele model5 on the honeycomb lattice. In the clean case the
system is set to be in the QSHI phase; namely, the spectrum
consists of two bands, and there is a gap between them.
When the system is disordered, some states far from the band
centers become localized, while there are energy regions of
delocalized states, located at the centers of the upper �empty�
band and lower �filled� band. What Onoda et al.25 found is
that each of these two does not disappear by itself when the
disorder strength is increased. Instead, when the disorder be-
comes much stronger than the disorder strength for the local-
ization in an ordinary insulator, these two merge into one
bundle of extended states energetically, and annihilate in pair
�see Fig. 12�a��.

To argue this phenomenon more generally, consider the
three-dimensional parameter space spanned by the topologi-
cal mass term m, chemical potential �, and disorder strength
�. From the surface-state arguments described in Sec. I, two
insulating phases having different types of edge �surface�
states, i.e., the topological insulator and an ordinary insula-
tor, should be disconnected by the delocalized �bulk-critical�
region. Then, when a finite topological mass term m changes
its sign from positive �topological insulator side� to negative
�ordinary insulator side�, we should also expect that a similar
levitation and pair-annihilation phenomenon occurs. Namely,
when a system transits from the topological insulator side to
the ordinary insulator side, the region of extended states in
the upper band and that in the lower band always merge and
annihilate with each other �see Fig. 12�b��. Combining this
picture with Onoda’s numerical observation,33 one can then
expect that the delocalized �bulk-critical� region constitutes a
surface in the 3D parameter space spanned by �, m, and �,
only to isolate the topological insulator phase from an ordi-
nary insulator phase �see Fig. 13�.

C. Possible microscopic scenario

Generally speaking, one has to go beyond our mean-field
treatment of disorder in order to study the behaviors of mo-
bility edges. However, we can still speculate the microscopic
picture of the levitation and pair-annihilation phenomena dis-
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cussed above in terms of the quantum correction doubling
found in this paper.

We expect that the intervening bulk-critical region �blue
filled region in Figs. 12�a� and 12�b� and Fig. 13� corre-
sponds to the �topo

−1 �0 region. Namely, when a system tran-
sits from the topological insulator to an ordinary insulator,
we surmise that one of the high-energy modes, i.e., parity
diffusion mode appearing in Eq. �106�, becomes massless

once, only to guarantee the existence of the bulk-critical re-
gion between these two insulating phases. This conjecture
naturally leads to the following microscopic scenario of the
levitation and pair-annihilation phenomena.

Suppose that the T-symmetric disorder is introduced in
the topological insulator. We assume that such disorder po-
tential is strong enough to make the system localized. But it
is not strong enough to make the upper �empty� band and
low �occupied� band mixed with each other. Namely, a sys-
tem locates in the topological insulator side of Fig. 13 so that
it can be adiabatically connected into the topological insula-
tor phase in the clean limit. In such localized phase, we ex-
pect that a parity diffusion mode always exists in the high-
energy region and is protected by the infrared cutoff �topo

−1 ,
while the charge diffusion mode disappears because of the
relatively strong disorders �see Fig. 14�a��. Starting from this
localized phase, let us decrease the topological mass term �or
further increase the disorder strength�. Then, this infrared
cutoff �topo

−1 associated with the parity diffusion mode de-
creases gradually, only to be renormalized to be zero at the
transition point �see Fig. 14�b��. Namely, at this transition
point, the parity diffusion mode becomes massless. As a re-
sult, the Cooperon term corresponding to this parity diffusion
mode, i.e., Eq. �114�, becomes effective and brings about the
positive quantum interference effect on the back-scattering
processes, in the same way as in Sec. IV D. Because of this
positive quantum interference effect, which emerges only
when the parity diffusion mode becomes massless, the
charge diffusion constant recovers at around �topo

−1 �0, even
in the presence of the relatively strong disorder �see the red
line in Fig. 14�b��.

(a) α

µ
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insulator

ordinary insulator

delocalized
(Bulk-critical)

region

(b)
ordinary insulator

(c) α

µ

ordinary insulator

m

µ

topological
insulator
(m>0)

ordinary insulator
(m<0)

delocalized
(Bulk-critical)

region

FIG. 12. �Color online� �a� Onoda’s phase diagram �Ref. 25� in
the �-� plane with m�0 �topological insulator side�. �b� A sche-
matic phase diagram in the m-� plane, which is expected from the
surface �edge� state’s argument described in Sec. I. �c�. A schematic
phase diagram in the �-� plane of the ordinary insulator side �m
�0�. In �a�–�c�, we have two delocalized energy regions �blue filled
regions�, which locate at the center of the upper band and the lower
band. In �a�, these two delocalized regions eventually merge and
annihilate in pair when � increases. As a result, the topological
insulator and ordinary insulator are always disconnected by the
bulk-critical �delocalized� region. In �c�, however, two delocalized
regions registered at the upper band and the lower band annihilate
without merging each other when � increases. Thus, all the insulat-
ing regions appearing in �c� are adiabatically connected from one
point to others. In �b�, two delocalized regions merge and annihilate
with each other, when the topological mass m changes its sign from
positive to negative. As a result, the topological insulator and ordi-
nary insulator are again disconnected from each other by the bulk-
critical �delocalized� region, as in �a�.

m

α
µ

Fig. 12(a)Fig. 12(c)

Delocalized
(b lk iti l)

Fig. 12(b)

(bulk-critical)
region

FIG. 13. �Color online� A schematic phase diagram in the
�-�-m space. The vertical axis is the disorder strength �, while the
horizontal plane is spanned by the chemical potential � and the
topological mass m. The delocalized region �blue filled region� con-
stitutes a surface in this three-dimensional parameter space, so that
an ordinary insulator phase and the topological insulator phase are
adiabatically disconnected from each other. Namely, one cannot
move from one phase to the other, without crossing the delocalized
region, i.e., bulk-critical region. The phase diagram for the constant
positive m �topological insulator side� and that for the constant
negative m �ordinary insulator side� are separately described in
Figs. 12�a� and 12�c�, respectively. The phase diagram for the con-
stant � corresponds to Fig. 12�b�.
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However, when one further decreases the topological
mass �or increases the disorder strength�, the infrared cutoff
�topo

−1 becomes finite again. As a result, this positive quantum
interference effect due to the massless parity diffusion mode
becomes ineffective again, only to lead a system into an
insulating phase �see Fig. 14�c��. This insulating phase is
now adiabatically connected to an ordinary insulator in the
clean limit.

To uphold this microscopic picture, we need to consider
several ingredients missing in our approach.34 We will enu-
merate them in the following. As indicated in Figs. 12 and
13, the pair annihilation occurs only in the topological insu-
lator side. Namely, the phase diagram is asymmetric with
respect to the sign change in the topological mass term. On
the other hand, all the findings in this paper are symmetric
with respect to the sign change in this mass term. This is
obviously because our starting model is the effective con-

tinuum model, describing only the local structure around a
certain k point. On the other hand, the Z2 topological number
is determined from the global information of the Bloch wave
functions’ phase in the k space.15 Therefore, in such an ef-
fective continuum model one cannot determine whether the
topological insulator by itself corresponds to the m�0 phase
or the m�0 phase. Instead, it simply dictates that one of
these two should be the topological insulator, and the other is
an ordinary insulator. As such, to describe the asymmetric
behavior of the mobility edge as in Fig. 13, we clearly have
to deal with lattice models.

In the present work we treated disorder in the mean-field
level, considering only the Cooperon correction. To verify
the aforementioned scenario, we thus also need to deal with
interactions among the various low-energy modes, beyond
the mean-field treatment. In such situations, the intermode
interaction between the quasidegenerate Goldstone modes
found in Sec. IV certainly plays an important role in the
levitation and pair-annihilation phenomena.
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APPENDIX A: EFFECTS OF GENERIC TIME-REVERSAL
INVARIANT DISORDERS

In this paper, we have restricted ourselves to the
chemical-potential-type disorder for simplicity. However,
there exist in general several other types of T-invariant dis-
order potentials, as described in Sec. II �see Eq. �7��. We
basically expect that these additional time-reversal invariant
disorders will not change our results drastically. To uphold
this expectation, we study in this appendix how our self-
consistent Born solution is modified in the presence of ge-
neric time-reversal invariant disorders, focusing on the zero-
energy wave function at the critical point. As a result, we
will obtain the following facts, which partially support this
expectation. One is that, when only the diagonal correlations,
� j j, are present, our solutions derived in Sec. III do not
change at all �see Eqs. �A16�, �A4�, and �A8��. When the
off-diagonal correlation such as �05 is introduced, F5 ac-
quires a finite imaginary part, i.e., F5��0, even at the zero-
energy state at the critical point �see Eqs. �A16�, �A4�, and
�A8��. However, provided that �05 is not so large in compari-
son with the diagonal correlation such as �00, �55, etc., the
effect of the nonzero F5� is expected to be negligible.

The generic T invariant disorders bring about the coupling
between F5 and F0 more explicitly in the self-consistent
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ε
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FIG. 14. �Color online� �a� The low-energy spectrum in the
topological insulator side contains two relevant diffusion modes.
One is the usual charge diffusion mode, which disappears in the
presence of relatively strong disorders. The other is the parity dif-
fusion mode, which is protected by the infrared cutoff �topo

−1 from the
disorders. �b� When a system transits from the topological insulator
phase to the ordinary insulator phase, the parity diffusion mode
becomes massless. Namely, when one further increases the disorder,
starting from �a�, �topo

−1 becomes renormalized by the disorder, only
to reach zero. As a result, the Cooperon term corresponding to this
parity diffusion mode becomes effective and induces the positive
quantum interference effect on the backward-scattering process of
the charge-degrees of freedom. Because of this, the charge diffusion
mode recovers at �topo

−1 =0. �c� The low-energy spectrum in the ordi-
nary insulator side.
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Born �scB� equation. Namely, instead of Eqs. �38� and �39�,
our scB equation reads

	
0��k��1

d3k
A+F0 − BF5

F0
2 − ��=1

5
F�

2
= f0 − F0, �A1�

	
0��k��1

d3k
BF0 − A−F5

F0
2 − ��=1

5
F�

2
= f5 − F5, �A2�

where only the following three parameters are the relevant
model parameters:

A� � 
�00 + �55 � �
j��15,¯,45�

� j j�� , �A3�

B � 2�05� . �A4�

The coefficients of 
̂1,2,3,4 in the one-point Green’s function,
on the other hand, are again free from renormalization,

F1,2,3 � f1,2,3 = − k1,2,3, F4 � f4 � 0. �A5�

In terms of G defined in Eqs. �40� and �41�, we can rewrite
Eqs. �A1� and �A2� more transparently,


2��A+F0 − BF5� · G = f0 − F0,

2��BF0 − A−F5� · G = f5 − F5.
� �A6�

When it comes to the zero-energy wave function at the
critical point, i.e., f0= f5=0, this coupled equation could be
“diagonalized,”

�1 − "�G����F0 − F5� = 0, �A7�

with �=�. "� and �� are defined as follows:

�� �
1

B
��s � ��s

2 − B2� , �A8�

"� � − ��a � ��s
2 − B2� , �A9�

with positive definite �s and �a,

�s �
1

2
�A+ + A−� = �00� + �55� ,

�a �
1

2
�A+ − A−� = �

j��15,¯,45�
� j j� .

Observing Eqs. �17�, note also that �s defined above is al-
ways greater than �B� defined in Eq. �A4�,

�s
2 − B2 � 0. �A10�

Equation �A7� with �=� can be trivially satisfied by F0
=F5�0. In what follows, we will enumerate all possible
nontrivial solutions of this coupled equation. Let us first
write down the real part and imaginary part of Eq. �A7� for
both �=�, separately. Noting that �� and "� are real val-
ued, we have the following for �=+:

�1 − "+ Re G "+ Im G

− "+ Im G 1 − "+ Re G
���+F0� − F5�

�+F0� − F5�
� = 0.

�A11�

For �=−, we have

�1 − "− Re G "− Im G

− "− Im G 1 − "− Re G
���−F0� − F5�

�−F0� − F5�
� = 0.

�A12�

Observing Eq. �A10�, notice that �+��− in general. As such,
�F0 ,F5� cannot satisfy F5=�−F0 and F5=�+F0 simulta-
neously. Thus, when F5=�−F0 is adopted, the determinant of
the 2�2 matrix in Eq. �A11� should be zero,

�1 − "+ Re G "+ Im G

− "+ Im G 1 − "+ Re G
� = 0, �A13�

or equivalently

1 = "+ Re G, Im G = 0.

On the other hand, when F5=�+F0 holds true, we have the
following in turn:

1 = "− Re G, Im G = 0.

We thus have the only two possible nontrivial solutions,


 �Bi�:F5 = �−F0, 1 = "+ Re G and Im G = 0,

�Bii�:F5 = �+F0, 1 = "− Re G and Im G = 0.
�

In either case, Im G=0 readily leads us to a=0 first. The
reasoning of this was already described in Sec. III A 1. When
a=0, the real part of the function G becomes simplified;
Re G�a=0�−2+2b arctan�b−1� �see Eq. �43��. Thus, above
two solutions will be transcribed into the following two:

b arctan�b−1� =
1 + 2"�

2"�

, �A14�

with F5=��F0, respectively.
Since the left-hand side of Eq. �A14� is positive semidefi-

nite, we have the following two parameter region supporting
nontrivial solutions:

��a�: "+ � −
1

2
� "−,

�b�: "+ � "− � −
1

2
.�

We also used "−�"+, which is trivially supported by Eq.
�A10�. These two parameter regions are depicted in Fig. 15,
where region �a� actually includes the “compressible phase”
argued in Secs. III and IV, i.e., ���c and B=�a=0.

In region �a�, only the type-�Bi� solution becomes pos-
sible,

F5 = �−F0, �a,b� � �0,
� + 2�"+

4"+
� . �A15�

Under F0
2−F5

2��a+ ib�2, this is identical to the following
solution:
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�F0,F5� = � i
�b�

�1 − �−
2
�1,�−� . �A16�

This solution comprises continuously with the physical scB
solution described in Sec. III. Namely, when �a taken to be
zero, Eq. �A16� precisely reduces to Eq. �51�.

When it comes to the region-�b�, type-�Bii� also becomes
a possible solution,

F5 = �+F0, �a,b� � �0,
� + 2�"−

4"−
� , �A17�

namely,

�F0,F5� = �
�b�

��+
−2 − 1

��+
−1,1� . �A18�

In the absence of finite B and �a, however, this solution is
continued into Eq. �49�. Thus, this can never hold true
therein. Because of this, we judge the type-�Bii� solution to
be unphysical.

APPENDIX B: MODE-MODE COUPLING THEORY

The weak-localization calculation �and also the self-
consistent Born calculation� described in Sec. IV has the
small coupling constant 1 / ���� only for the weakly disor-
dered region, i.e., ���c, while it becomes an uncontrolled
analysis for ���c. Bearing in mind this strong disorder re-
gion, we will employ in this appendix more phenomenologi-
cal calculations, based on the mode-mode coupling theory.35

Without resorting to the Kubo formula, this theoretical
framework gives us a mean-field equation for the diffusion
constant D, where the quantum correction due to the Coop-
eron term is taken into account as in the standard weak-
localization calculation.35 The final results of this appendix
such as Eqs. �B54� and �B61� indicate that this quantum
correction becomes doubled, when the topological mass term
m is fined tuned to be zero.

The calculation consists of two steps. The first step begins
with the Bethe-Salpeter �BS� equation for the response func-
tion !��,
��k ,k� ;q ,
�,

!��,
��k,k�;q,
�

= G��1

R �k+,�+�G�1�
A �k−,�−�
−

1

2�i
��1��
�1

�k,k�

+ �
k1

U�1�1,
1�1

2PIR �k,k1;q,
�!�1�,

1
�k1,k�;q,
�� ,

�B1�

!��,
��k,k�;q,
� � −
1

2�i

G��

R �k+,k+�,�+�G
�
A �k−�,k−,�−��imp,

�B2�

with k��k�
q
2 and �����



2 . Out of this equation, we

first derive the linearized equations of motion �EOMs� for
the density relaxation function �0�q ,
�, current relaxation
function � j�q ,
�, and relaxation functions associated with
other internal degrees of freedom,

�0�q,
� � �
k,k�

�
�,�,


�
̂0���!�
,
��k,k�;q,
� , �B3�

� j�q,
� � �
k,k�

�
�,�,


q̂��
̂����!�
,
��k,k�;q,
� , �B4�

with q̂ normalized to be a unit vector. Since the EOMs thus
derived are linearized, one can solve them for these relax-
ation functions, only to obtain their asymptotic expressions
for the small q, 
,

�0�q,
� �
1


 + iDq2 , � j�q,
� �
q


 + iDq2 , . . . .

�B5�

By way of this, the diffusion constant D appearing in the
denominators will be expressed in terms of the relaxation
kernels Ma,b�q ,
�, latter of which are defined by the two-

particle irreducible �2PIR� vertex function Û2PIR �step �i��,

D � i
 M5j,5j

M j,jM5j,5j − M5j,jM j,5j
�

�q,
�0

. �B6�

Ma,b�q,
� � 2i�−1�ab +
1

24�

� �
k,k�

�
a
L�k;q,
����U��,
�

2PIR �k,k�;q,
�

��
b
R�k�;q,
���
 �B7�

�see also Eqs. �B31� and �B32� for the definitions of 
̂a
L,R�.

The second step begins with the observation that the 2PIR

vertex function Û2PIR�k ,k� ;q ,
� in disordered media is usu-
ally dominated by the Cooperon at small 
 and k+k�. The
Cooperon is the series sum of the ladder-type diagrams in the
particle-particle channel, which is therefore obtained from
the diffuson with the hole line time reversed. The diffuson is
in turn responsible for the diffusion pole in the relaxation
functions, i.e., the denominators in Eq. �B5�. As such, in the

FIG. 15. �Color online� The phase diagram of the scB solution
in the presence of generic time-reversal invariant disorders. Region
�a� includes the “compressible phase” argued in Secs. III and IV,
i.e., ���c at B=�a=0. Region �b� appears only when �a

�� j=�15,25,¯,45�� j j �0.5. Note also that �a ,�s�0 and B��s be-
cause of Eq. �17� �see also Eq. �A10��.
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presence of the T symmetry, the asymptotic form of the
Cooperon at small 
 and k+k� should be characterized by
the same diffusion constant as that in Eq. �B5�. Based on this
spirit, we will replace the 2PIR vertex function in Eq. �B7�
by this asymptotic form of the Cooperon. Through this ap-
proximation, Eqs. �B6� and �B7� constitute a self-consistent
equation for the diffusion constant D �step �ii��.

Irrespective of the magnitude of �, the diffuson consists
of the charge diffusion mode and parity diffusion mode,

	̂d�q,
� �
1


 + iDq2 	̂1
d +

1


 + iDq2 + i�topo
−1 	̂2

d, �B8�

with the positive semidefinite �topo
−1 proportional to m2 �see

Eqs. �104�, �107�, and �108��. Namely, the second term, i.e.,
the parity diffusion mode, generally suffers from the finite
infrared cutoff in the presence of the topological mass, while
both of these two equally dominate the low-energy region for
m�0,

	̂d�q,
� � �
1


 + iDq2 �	̂1
d + 	̂2

d� for Dl−2 � �topo
−1 ,

1


 + iDq2 	̂1
d for Dl−2 � �topo

−1 �
�B9�

�see Eqs. �102�, �98�, and �106��. In the presence of the T
symmetry, this crossover behavior will be transcribed onto
the Cooperon term; the backward-scattering process origi-
nated from the parity diffusion mode becomes ineffective, in
the presence of the relatively large topological mass m,

Ûcoop�k + k�,
�

� �
1


 + iD�k + k��2 �Û1
c + Û2

c� for Dl−2 � �topo
−1 ,

1


 + iD�k + k��2Û1
c for Dl−2 � �topo

−1 �
�see Eq. �112��.

Corresponding to these two-mode features, we will derive
in this appendix the two limiting gap equations; one is valid
for Dl−2��topo

−1 , while the other is for Dl−2��topo
−1 . This ap-

pendix is organized as follows. Appendix B 1 is devoted for
step �i�, in which the linearized coupled EOMs for the relax-
ation functions and Eqs. �B6� and �B7� will be derived. Us-
ing Eqs. �B6� and �B7�, we will derive in Appendix B 2 the
gap equations for the two-limiting cases �step �ii��. By solv-
ing these gap equations, we will finally see how the diffusion
constant for ���c behaves as a function of �̄ and m �see
Eqs. �B54� and �B61� and Fig. 17�.

1. Coupled EOMs for relaxation functions

The EOMs derived henceforth are linearized with respect
to the relaxation functions �unknown quantities�. Namely, the
mode-mode interactions among various bosonic degrees of
freedom �density, current and so on� will be represented by
the “mean field” induced by the corresponding relaxation
functions. This mean field for the relaxation function is

analogous to the self-energy for a one-point Green’s function
so that it is often dubbed as the relaxation kernel.35 Being
linearized, such EOMs can be easily solved, only to let us
express relaxation functions in terms of the relaxation kernel.

These linearized EOMs also have to be closed with re-
spect to a set of unknown relaxation functions. Consider, for
example, the EOM of the density relaxation function, which
is nothing but the continuity equation. This equation contains
the current relaxation function. Accordingly, to make
coupled EOMs to be closed, we further need the EOM for
this current relaxation function, i.e., constitutive equation.
The constitutive equation usually involves interactions be-
tween the current and other degrees of freedom �DOFs� such
as the spin density, sublattice density, and so forth. As such,
we further need to derive the EOMs of the relaxation func-
tions associated with these internal DOFs. In this way, we
need to make our entire coupled EOMs to be closed with
respect to a set of unknown relaxation functions.

Let us begin with the continuity equation. Apply the fol-
lowing differential operator from the left-hand side of the
Bethe-Salpeter equation Eq. �B1�:

�0Ĝ−1�k;q,
� � ĜR,−1�k+,�+� − ĜA,−1�k−,�−�

= 
1̂ − q�
̂� − �̂R��+� + �̂A��−� .

Taking the summation over repeated band indices, we then
have

�
1̂ − q�
̂� − �̂R + �̂A���!�
,
��k,k�;q,
�

= − �ĜR�k+,�+� − ĜA�k−,�−���1�1
−
1

2�i
��1�1

�k,k�

+ �
k1

U�1�1,
1�1

2PIR �k,k1;q,
�!�1
,

1
�k1,k�;q,
�� .

�B10�

Under the integrals over k and k�, the vertex function and the
self-energy in Eq. �B10� set off each other,


�0�q,
� − q� j�q,
� =
1

2�i
�
k�,


�Ĝ


R �k+�,�+� − Ĝ



A �k−�,�−�� .

�B11�

Namely, we used the following Ward identity:

��R�k+,�+� − �A�k−,�−����

� �
k�

�Ĝ�����k�;q,
�U���,���
2PIR �k�,k;q,
� ,

with �Ĝ�k ;q ,
�� ĜR�k+ ,�+�− ĜA�k− ,�−�.
Recall that we are interested in the relaxation functions

for sufficiently low-energy and long-wavelength region, only
to derive their diffusion pole structure. Thus, regarding 

and q as sufficiently small quantities, we can replace the
right-hand side of Eq. �B11� by the spectral function,


�0�q,
� − q� j�q,
� = A0 + O�q,
� , �B12�

where �A0� stands for the density of state at �=�,
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A0 �
1

2�i
�

k

Tr��Ĝ�k;0,0�� � − 16F0�� . �B13�

Equation �B12� is nothing but the continuity equation.
The continuity equation derived above contains the cur-

rent relaxation function. Thus, we need to next derive an
equation of motion for this. The derivation goes along in a
quite analogous way as that of the continuity equation. Spe-
cifically, to end up with an equation having 
� j�q ,
�, we
will apply the following onto the Bethe-Salpeter equation,

instead of �0Ĝ−1,

� jĜ
−1�k;q,
� �

1

2
��0Ĝ−1�k;q,
�, q̂�
̂��+.

Since 
 and q are sufficiently small, we will keep only its
leading-order contributions,

� jĜ
−1�k;q,
� � �


�F0�

��
+ 2iF0��q̂�
̂� − q1̂ . �B14�

Apply this onto Eq. �B1� and take the sum over k, k�, and the
band indices. By way of this, we obtain the following con-
stitutive equation:

�

�F0�

��
+ 2iF0��� j�q,
� − q�0�q,
�

= Aj − �
k,k1

�
̂ j
L�k;q,
���1�1

� U�1�1,
1�1

2PIR �k,k1;q,
��
k�

!�1
,

1
�k1,k�;q,
� .

�B15�

Aj and 
̂ j
L�k ;q ,
� are defined as follows:

Aj �
1

2�i
�

k

Tr�
̂ j
L�k;q,
�� , �B16�


̂ j
L�k;q,
�

�
1

2
��Ĝ�k;q,
� · ĜR,−1�k+,�+� · q̂�
̂� · ĜR�k+,�+�

+ ĜA�k−,�−� · q̂�
̂� · ĜA,−1�k−,�−� · �Ĝ�k;q,
�� .

�B17�

Contrary to the continuity equation, this equation of mo-
tion contains the convolution between the 2PIR vertex func-
tion and the response function explicitly. This convolution
part describes the interactions between the current relaxation
function and the other types of relaxation functions. We will
linearize this convolution part with respect to relaxation
functions in the following three paragraphs.

To do this, note first the completeness of the 
 matrices,

�

����� �
1

4 �
�=�0,1,·,5,15,¯,42�

�
̂��
��
̂����
� �B18�

and that of the spherical harmonic function Ylm�#̂�,

f�x#̂� � �
l=0

$

�
m=−l

l

Ylm�#̂��
#̂�

Ylm
� �#̂��f�x#̂�� , �B19�

where #̂ denotes the normalized vector and �#̂¯ stands for
the two-dimensional integral over the angle direction: �#̂

�4�. Using these two completeness relations, we can de-
couple the convolution part in Eq. �B15� into the sum over
the countable numbers of modes �see also Fig. 16�,

�

�F0�

��
+ 2iF0��� j�q,
� − q�0�q,
�

= Aj −
1

4 �
k,k1

�
̂ j
L�k;q,
���1�1

U�1�1,
1�1

2PIR �k,k1;q,
�

� �
�=0

15

�
l=0

$

�
m=−l

l

Ylm�k̂1��
̂���1
1
�̄lm,���k1�;q,
� .

�B20�

Namely, the k1 dependence of the response function is de-
composed into the dependence on its radial coordinate �k1�
and that on the angle coordinate k̂1. At a price for this, the
right-hand side contains the summation over the azimuthal
and magnetic quantum numbers, l and m. For each l, m, and
�, �̄lm,��x ;q ,
� is defined as follows:

�̄lm,��x;q,
� � �
k̂

�
k�

�
�,�,


�
̂����Ylm
� �k̂�!�
,
��xk̂,k�;q,
� .

�B21�

Observing this definition, notice that the x dependence of
�̄lm,��x ;q ,
� and its 
 ,q dependence can be further factor-
ized for small 
 and q,

�̄lm,��x;q,
� = glm,��x��lm,��q,
� . �B22�

This is because, for such small 
 and q, the response func-
tion appearing in Eq. �B21� is dominated by the diffuson,
which depends only on 
 and q,

m m
k+

k−

k+

k−

k’+

k1,−

k2,−

k1,+

k2,+

k’−

k’+

k’−k1,−

k1,+

qµγµ γ0

γ0

= Σk2
Σm

qµγµ

2PIR

2PIR

Φ

Φ

FIG. 16. �Color online� The convolution between the 2PIR ver-
tex function and the response function is replaced by the direct
product between the relaxation kernels and relaxation functions,
where we used the complete set for a function of k1, i.e., f�k1�
��k2

��k1−k2�f�k2���k2
�mum�k1��um

� �k2�f�k2�. Namely, um con-
stitutes the bare vertex part described by “�” mark in the figure,
while um

� constitutes that described by “�” mark.
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!��,
��k,k�;q,
� � −
�

2�i
Ĝ��1

R �k+,�+�Ĝ�1�
A �k−,�−�

� �	̂d�q,
���1�1,
1�1
Ĝ�1�

R �k+�,�+�

�Ĝ

1

A �k−�,�−� . �B23�

By taking the integrals over k̂ and k� in Eq. �B21� and keep-
ing only the leading order in small 
 and q, one can actually
verify this factorization for any l, m, and � �consult also
Appendix D for several examples.�

Without loss of generality, we can assume that glm,��x�
thus obtained is normalized with respect to the integral over
the radial direction,

	
0

�

x2dxglm,��x� � 1.

Then, corresponding �lm,��q ,
� given in Eq. �B22� becomes
the nonzero azimuthal number �l�0� generalizations of the
relaxation functions defined in Eqs. �B3� and �B4�,

�lm,��q,
� � �
k,k�

�
�,�,


�
̂����Ylm
� �k̂�!�
,
��k,k�;q,
� .

�B24�

Thus, substitute Eq. �B22� back into Eq. �B20�. Then, we
finally obtain the constitutive equation, which is fully linear-
ized with respect to these relaxation functions,

�

�F0�

��
+ 2iF0��� j�q,
� − q�0�q,
�

= Aj −
1

4�
l=0

$

�
m=−l

l

�
�=0

15

�
�
k,k�

�
̂ j
L�k;q,
����U��,
�

2PIR �k,k�;q,
�

� �
̂���
glm,���k���Ylm�k̂����lm,��q,
� . �B25�

The second member of its right-hand side described the
mean field induced by other relaxation functions, into which
the 2PIR vertex function is encoded. This situation is quite
analogous to how the one-particle irreducible function �i.e.,

self-energy� describes the interaction among one-point
Green’s functions.

Due to this interaction, however, the constitutive equation
above also contains relaxation functions �lm,��q ,
� assigned
to the higher order harmonic �l�1� sector. Thus, to make the
final coupled EOMs to be closed, we must also derive the
EOM for all of these functions. This is, however, limitless.
To make it tractable, we thus need to truncate interactions
among these too many modes. In this paper, we will consider
the interactions only within the “s-wave” sector. Namely, we
will restrict the summation over l, m, and � in Eq. �B25� to
the l=0 sector,

�00,"�q,
� � �
k,k�

�
�,�,


�
̂"���!�
,
��k,k�;q,
� .

These 16 modes in the s-wave sector further reduce into
the eight modes �Table III� when the rotational symmetry is
taken into account. Namely, by noting that the response func-
tion is invariant under the simultaneous rotation in the pseu-
dospin space and in the momentum space,

�Ûn,������Ûn,��
�
!��,
��k,k;q,
��Ûn,�
† �����Ûn,�

† ����

� !����,
����Rn,�k,Rn,�k�;Rn,�q,
� ,

Ûn,� � e��/4�����n�
̂�
̂�, �B26�

we can derive the following identity:

�
�=0

15

�
̂�����00,��q,
� �
1

�4�
�
a=0

45j

�v̂a�q�����a�q,
� ,

�B27�

with

�a�q,
� � �
k,k�

�
�,�,


�v̂a�q����!�
,
��k,k�;q,
� ,

�v̂0, v̂5, v̂4, v̂45� � �
̂0,
̂5,
̂4,
̂45� ,

�v̂ j, v̂5j, v̂4j, v̂45j� � �q̂�
̂�, q̂�
̂5�, q̂�
̂4�,
1

2
q̂�����
̂��� .

�B28�

By use of this equality, Eq. �B25� turns out to consist only of
those eight functions defined in Eq. �B28�,

TABLE III. Symmetry of eight modes in the s-wave sector and their symmetries under the spatial
inversion I and the time reversal T. Since 
̂0, 
̂4, 
̂5, and 
̂45 behave as a scalar quantity under the rotation
defined in Eq. �23�, we regard them as the “density” associated with the sublattice and spin degrees of
freedom. Corresponding to these four types of density, we have four types of “current,” which in turn behave
as a vector quantity under the rotation.

Label Density T I label “Current” T I

“0” 
̂0 + + “j” q̂�
̂� − −

“5” 
̂5 + + “5j” q̂�
̂�5 + −

“4” 
̂4 − − “4j” q̂�
̂�4 − +

“45” 
̂45 + − “45j” q̂�
1
2����
̂�� − +
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�F0�

��
� j − q�0 + �

a=0,5,¯,45j

M j,a�q,
��a = Aj , �B29�

Ma,b�q,
� � 2iF0��ab +
1

24�
�
k,k�

�
̂a
L�k;q,
����

�U��,
�
2PIR �k,k�;q,
��
̂b

R�k�;q,
���
.

�B30�


̂a
L,R�k ;q ,
� above are given as follows:


̂a
L�k;q,
�

�
1

2
��Ĝ�k;q,
� · ĜR,−1�k+,�+� · v̂a�q� · ĜR�k+,�+�

+ ĜA�k−,�−� · v̂a�q� · ĜA,−1�k−,�−� · �Ĝ�k;q,
�� ,

�B31�


̂a
R�k;q,
� � v̂a�q�g00,a��k�� . �B32�

Ma,b�q ,
� defined in Eq. �B30� generally appears in the
EOM for the va-type relaxation function and plays role of the
mean field induced by the vb-type relaxation functions.
Namely, this 8�8 matrix is nothing but the “self-energy” in
the matrix-formed EOMs for the s-wave sector �see Eq.

�B35��. Thus, we will refer to M̂�q ,
� as the relaxation
kernel henceforth. Notice that each element of this matrix
becomes pure imaginary when its two arguments taken to be
zero,

Ma,b�q,
�� = − Ma,b�− q,− 
� . �B33�

This can be directly seen from

��Ĝ�k;q,
��� � − ��Ĝ�k;− q,− 
��t,

�U��,
�
2PIR �k,k�;q,
��� = U�
,��

2PIR �k,k�;− q,− 
� . �B34�

The EOMs for the other six s-wave modes can be derived
in parallel with that for the current relaxation function. Spe-
cifically, we will begin with the Bethe-Salpeter equation ap-
plied by the following, instead of Eq. �B14�:

�aĜ−1�k;q,
� �
1

2
��0Ĝ−1�k;q,
�, v̂a�q��+,

with v̂a�q� taken to be 
̂5 , 
̂4 , . . . , 1
2 q̂�����
̂�
̂�, respectively.

Going through the same procedure as described so far, we
will reach the constitutive equations for these remaining six
modes. Combined with Eqs. �B12� and �B29�, such equations
consist of the following 8�8 matrix-formed EOMs,

�K̂�q,
� + M̂�q,
�� · �̂�q,
� � Â�q,
� . �B35�

�̂�q ,
� and Â�q ,
� read,

�̂t � ��0,� j,�5,�5j,�4,�4j,�45,�45j� ,

Ât � �A0,Aj,A5,A5j,A4,A4j,A45,A45j� ,

latter of which is defined as follows:

Aa�q,
� �
1

2�i
�

k

Tr�
̂a
L�k;q,
�� . �B36�

K̂�q ,
� and M̂�q ,
� are defined as follows:

K̂ ��K̂1 0̂

0̂ K̂2

�, M̂ ��M̂1 0̂

0̂ M̂2

� ,

K̂1 ��

 − q

− q 
c−1


d−1 + 2ie−1 
c−1


c−1
� ,

K̂2 ��

c−1


c−1 
d−1 + 2ie−1


c−1 − q


d−1 + 2ie−1 − q 
c−1
� ,

�B37�

M̂1 ��
0 0

M j,j M j,5j

M5,0 M5,5

M5j,j M5j,5j

� ,

M̂2 � �
M4,4 M4,45

M4j,4j M4j,45j

M45,4 M45,45

M45j,4j M45j,45j

� , �B38�

with

c−1 �
�F0�

��
, d−1 �

�F5�

��
, e−1 � F5�. �B39�

By solving Eq. �B35�, one can obtain the asymptotic ex-
pressions for the relaxation functions for small 
 and q,

�0�q,
� �
A0


 + iDq2 , �5�q,
� �
A0B0


 + iDq2 , . . . ,

�B40�

where �A0� stands for the density of state �see Eq. �B13��. The
�renormalized� diffusion constant D used above and other
coupling constants are expressed only in terms of the relax-
ation kernels estimated at 
 ,q=0,

D � i
 M5j,5j

M j jM5j,5j − M5j,jM j,5j
�

�q,
=0

, �B41�

B0 � − 
2iF5� + M5,0

M5,5
�

q,
=0

. �B42�

Equations �B41� and �B30� become the essential building
blocks of our gap equation �see below�.

RYUICHI SHINDOU AND SHUICHI MURAKAMI PHYSICAL REVIEW B 79, 045321 �2009�

045321-24



2. Gap equation and its solution

As was shown in Sec. IV, the charge diffusion mode and
parity diffusion mode equally dominates the diffuson in the
massless case �Dl−2��topo

−1 �, while the parity mode becomes
ineffective in the presence of the relatively large topological
mass �Dl−2��topo

−1 � �see Eqs. �106�, �98�, and �102��. Corre-
sponding to these two limiting cases, we will derive two
types of gap equations and their solutions in this section.

a. For m=0 case

Let us begin with the zero topological mass case first. In
this case, we will sum up Eqs. �107� and �108� since f3
� f4. With use of Eq. �96� and a2,3,4�0, such a summand
takes on a following form:

	̂d�q,
��F5�0 = −
a0f4

4
�1̂ + T̂1 + Ŝ1 + Ŝ2� . �B43�

In Sec. IV B, we have observed that the overall factor, a0f4,
has the diffusion pole as in Eq. �98�, where its bare expres-
sion was calculated explicitly. Namely, by keeping track of
the small q effect in Eq. �78�, we obtained the bare diffusion
constant as in Eq. �99�. Instead of such bare expressions,
however, we will describe henceforth this a0f4 in terms of
the renormalized diffusion constant defined by Eq. �B41�.
Namely, we want a0f4 to be given by the relaxation kernels,
only to obtain the self-consistent equation for the diffusion
constant.

To do this, notice that relaxation functions for small q and

 are dominated by the diffuson as in Eq. �B23�. Thus, by
substituting Eq. �B43� into Eqs. �B23� and �B3�, we will first
express the density relaxation function in terms of a0f4,

�0�q,
� � − 64�i��2a0f4. �B44�

The factor �2 in the right-hand side stems from the momen-
tum integral over k and k� in Eq. �B3�; � is the ultraviolet
cutoff of the momentum integral. Then, we will equate this
with �0�q ,
� obtained in step �i�, i.e., Eq. �B40�. By doing
this, a0f4 is expressed in terms of relaxation kernels,

− 64�i�a0f4 �
1

�2

A0


 + iDq2 . �B45�

Namely, the diffusion constant D in the right-hand side was
already given by the relaxation kernels as in Eq. �B41�.

Substituting this back into Eq. �B43�, we obtain the Coop-
eron at small 
 and k+k�,

Ûcoop�k + k�,
� = −
�a0f4

4
�1̂ − T̂1 − Ŝ1 + Ŝ2�

=
1

28�i

1

�2

A0


 + iD�k + k��2 �1̂ − T̂1 − Ŝ1 + Ŝ2� ,

�B46�

The diffusion constant D in Eq. �B46� is now given by the
relaxation kernels, via Eq. �B41�. These relaxation kernels
are in turn defined by the 2PIR vertex function, via Eq.
�B30�. The 2PIR vertex function is usually dominated by the
Cooperon given by Eq. �B46�, at around k+k��0. As such,

we will replace �approximate� the 2PIR vertex function in
Eq. �B30� by this asymptotic form of the Cooperon, i.e., Eq.
�B46�. By way of this, we obtain closed coupled equations
for the �renormalized� diffusion constant D,

D � i
M5j,5j

M j jM5j,5j − M5j,jM j,5j
, �B47�

Ma,b � 2iF0��a,b +
�A0�

212�2D�2	 	
L−1��k+k���l−1

d3kd3k�

�
�
̂a

L�k�����1̂ − T̂1 − Ŝ1 + Ŝ2���,
��
̂b
R�k����


�k + k��2
.

�B48�

Since Eq. �B46� is valid only for small �k+k��, we have im-
posed the additional constraint �k+k��� l−1 into these integral
variables. One might regard this upper limit as the mean-free
path. We have already taken in Eq. �B48� both 
 and q to be
zero. Thus, 
̂L,R�k� in the right-hand side stands for

̂L,R�k ;q ,
� estimated there;


̂a
L�k� � 
̂a

L�k;0,0� ,


̂a
R�k� � v̂a � g00,a��k�� ,

where v̂a was already defined in Eq. �B28�. The normalized
real-valued function g00,a�x� used above is given only in
terms of F0. For example, g00,j�x� is given as follows:

g00,j�x� �
4

�

1

N j

1

�F0
2 − x2�2
1 +

8

3

x2F0�
2

�F0
2 − x2�2� , �B49�

with its normalization factor Nj,

N j =
1

F0�

1 +

1

3
�F0�

F0�
�2� �B50�

�see Appendix D for its derivation�. Thus, Eqs. �B47� and
�B48� constitute closed coupled equations for the diffusion
constant.

To solve this gap equation, notice first that the coupling
between the current and the 
̂5-type current is disconnected
in the massless case; M j,5j =0. This can be seen directly
from

�1̂ − T̂1 − Ŝ1 + Ŝ2���,
�q̂��
̂�5��
 = 0, �B51�

which leads to D� i /M j,j. As a result of this, Eqs. �B47� and
�B48� become linear in D,

1

D
= 2F0� −

A0F0�

27�2D

1

�2	 	
L−1��k+k���l−1

d3kd3k�

�
g00,j��k���
�k + k��2

�− �F0��
2 − �F0��

2 + k2� − 2�k · q̂�2

��F0��
2 − �F0��

2 − k2�2 + 4�F0��
2�F0��

2 .

�B52�

Using Eqs. �B49� and �B50�, we can readily evaluate the
momentum integral in the right-hand side of Eq. �B52�. To
do this, we introduce a new integral variable q��k+k� so
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that dkdk��dkdq�. Moreover, we approximate g00,j��k−q���
in the integrand by g00,j��k�� since g00,j�x� is a slowly varying
function in the scale of l−1. These treatments give us the
following expression for 2D�−1:

2D�−1 � 1 +
1

6

l−1 − L−1

�

�−2 +
1

2
�̄2

�−2 +
1

3
�̄2

, �B53�

where we used A0�−16F0�� and F0� �̄+ i�−1. Observing
this expression, notice that the second member of the right-
hand side is nothing but the quantum correction to the diffu-
sion constant, which basically corresponds to the AWL cor-
rection to the conductivity.

b. For mÅ0 case

In the presence of relatively large topological mass, i.e.,
Dl−2��topo

−1 , the parity diffusion mode becomes the high-
energy degree of freedom. As such, only the charge diffusion
mode in Eq. �106� contributes the diffuson. With Eq. �95�,
such diffuson is given as follows:

	̂d�q,
��F5�0 = −
sf4

8

1 + t2

2
�1̂ + T̂4��1̂ + Ŝ1� +

1 − t2

2
�1̂ + T̂4�

��T̂1 + Ŝ2� + t�T̂2 + T̂3��1̂ + Ŝ1�� , �B54�

where s and t are defined by a04, a1, and a23,

a04 � s
1 + t2

2
, − 3a1 � s

1 − t2

2
, − a23 � st .

Contrary to the previous subsection, the tensor part of the
diffuson depends on the model parameters through the factor
t. As such, we will employ in this case not only the diffusion
constant D but also this tensor-form factor t as the “mean-
field parameters,” which should be self-consistently deter-
mined. In other words, both of them should be given by the
relaxation kernels, as in Eq. �B41�.

To do this, we will first calculate both the density relax-
ation function �0 and the sublattice density relaxation func-
tion �5 by the use of Eq. �B54�. Namely, we will substitute
Eq. �B54� into Eqs. �B23� and �B28�, only to obtain these
two functions in terms of sf4 and t first. The relaxation func-
tions thus calculated read as follows:

�0�q,
� � − 32���2isf4, �B55�

�5�q,
� � 32���2istf4. �B56�

Then, we will equate Eqs. �B55� and �B56� with the first two
members of Eq. �B40�, respectively. By way of this, f4 and t
can be given in terms of the relaxation kernels,

sf4 �
1

32��

1

�2

�A0�
i
 − Dq2 , �B57�

t � − B0 �
2iF5� + M5,0

M5,5
�

�q,
=0

. �B58�

By substituting these two back into Eq. �B54�, we can
express the diffuson only in terms of the relaxation kernels.
When its hole line time reversed, the corresponding Coop-
eron is readily derived,

Ucoop�k + k�,
� �
1

29�i

1

�2

A0


 + iD�k + k��2

���1 + t2��1̂ + T̂4��1̂ − Ŝ1�

− �1 − t2��1̂ − T̂4��T̂1 − Ŝ2�

+ 2t�T̂2 + T̂3��1̂ − Ŝ1�� . �B59�

The tensor-form factor t and the diffusion constant D appear-
ing in the right-hand side above are already given by the
relaxation kernels, via Eqs. �B58� and �B41�. Such relaxation
kernels are given by the 2PIR vertex function �see Eq.
�B30��. Thus, as in the previous subsection, we will approxi-
mate the 2PIR vertex function by Eq. �B59�. In terms of this
substitution, we arrive at a closed coupled equation for the
diffusion constant D and the tensor-form factor t, whose ex-
plicit expressions are given in Appendix C.

When solving this gap equation, we can see how the
quantum correction to the diffusion constant behaves as a
function of m and �. Several limiting values are summarized
in Fig. 17. Especially, in the zero-mass limit i.e., m=0+, the
solution of the gap equation reduces to a following simple
function of F0� �̄+ i�−1:

lim
m̄→0+

2D�−1 = 1 +
1

12

l−1 − L−1

�

�−2 +
1

2
�̄2

�−2 +
1

3
�̄2

, �B60�

Comparing this with Eq. �B53�, one can easily see that the
quantum correction to the diffusion constant is actually half
of that for m=0 case.

The discrepancy between Eqs. �B53� and �B60� is respon-
sible for the Cooperon term associated with the parity diffu-
sion mode. To see this explicitly, note first that a2, a3, and a4
reduce to zero in the limit of m→0+. Then, Eqs. �113� and
�114� in this limit read as follows:

FIG. 17. �Color online� A summary of several limiting values of
the quantum correction of the diffusion constant. Equation �B60�
corresponds to the green shaded region.
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lim
m→0+

Û1
c = − ��1̂ − T̂1 − Ŝ1 + Ŝ2� + T̂4 · �1̂ + T̂1 − Ŝ1 − Ŝ2�� ,

�B61�

lim
m→0+

Û2
c = − ��1̂ − T̂1 − Ŝ1 + Ŝ2� − T̂4 · �1̂ + T̂1 − Ŝ1 − Ŝ2�� .

�B62�

Observing these expressions, notice that the second members
of both Eq. �B61� and �B62� are totally ineffective in the
current-type relaxation kernels,

�T̂4 · �1̂ + T̂1 − Ŝ1 − Ŝ2����,
�q̂��
̂���
 = 0, �B63�

�T̂4 · �1̂ + T̂1 − Ŝ1 − Ŝ2����,
�q̂��
̂�5��
 = 0. �B64�

The consequences of these two equations are twofold. The
second equation in combination with Eq. �B51� leads M j,5j

�0 first. Thus, we have D� i
M j j

again, which indicates that
M j,j originated from Eq. �B61� and that from Eq. �B62�
contribute to the quantum correction in an additive way.
Equation �B63� moreover indicates that these two quantum
corrections have the same magnitude and sign. In other
words, the quantum correction in Eq. �B53� can be divided
into two parts,

2D�m̄=0�−1 = 1 +
1

12

l−1 − L−1

�

�−2 +
1

2
�̄2

�−2 +
1

3
�̄2

+
1

12

l−1 − L−1

�

�−2 +
1

2
�̄2

�−2 +
1

3
�̄2

.

Each of these two quantum corrections is originated from
Eq. �B61� and �B62�, respectively. Since we have already
ignored Eq. �B62� for the m�0 case, the resulting solution
has only single 1/12, as in Eq. �B60�.

APPENDIX C: MEAN-FIELD EQUATION FOR mÅ0 CASE

The mean-field equation for the diffusion constant D and
t in the presence of the finite topological mass m is given as
follows:

D � i
M5j,5j

M j jM5j,5j − M5j,jM j,5j
, t �

2iF5� + M5,0

M5,5
,

with the relaxation kernels Ma,b being given by D and t
self-consistently,

Ma,b � 2iF0��a,b +
�A0�

213�2D

1

�2	 	
0��k+k���l−1

d3kd3k�
1

�k + k��2

��
̂a
L�k������1 + t2��1̂ + T̂4��1̂ − Ŝ1�

− �1 − t2��1̂ − T̂4��T̂1 − Ŝ2�

+ 2t�T̂2 + T̂3��1̂ − Ŝ1����,
��
̂a
R�k����
.

Note that 
̂L,R�k� above are previously defined,


̂a
L�k� �

1

2
��Ĝ�k;0,0� · ĜR,−1�k,�� · v̂a · ĜR�k,��

+ ĜA�k,�� · v̂a · ĜA,−1�k,�� · �Ĝ�k;0,0�� ,


̂a
R�k� � v̂a � g00,a��k�� ,

with v̂a for a=0,5 , j and 5j given in Eq. �B28�. g00,a�x� used
in 
̂a

R�k� are given in terms of the one-point Green’s func-
tions �F0 and F5� and the tensor-form factor t,

g00,0�x� �
x2 + ���F0�2 + �F5�2� − t�F0

�F5 + F0F5
���

��a + ib�2 − x2�2
,

g00,5�x� �
tx2 − �t��F0�2 + �F5�2� − �F0

�F5 + F0F5
���

��a + ib�2 − x2�2
,

g00,j�x� � 
 F0� − tF5�

��a + ib�2 − x2�2
+

8

3

ab�F0� − tF5��x
2

��a + ib�2 − x2�4� ,

g00,5j�x� � 
 F5� − tF0�

��a + ib�2 − x2�2
−

8

3

ab�F5� − tF0��x
2

��a + ib�2 − x2�4� ,

with �a+ ib�2�F0
2−F5

2.

APPENDIX D: DERIVATION OF g00,a(x)

Starting from the Bethe-Salpeter �BS� equation for the
response function, we have derived in Appendix B 1 the
EOMs for the various types of relaxation functions. Such
coupled EOMs have two features; they are closed and linear-
ized with respect to the relaxation functions. Because of
these two features, we can solve them for the relaxation
functions. Out of this solution, we can relate the renormal-
ized diffusion constant with the 2PIR �two-particle irreduc-
ible� vertex function. This relation in turn becomes an essen-
tial building block of the self-consistent loop of the diffusion
constant �see Appendix B�.

To obtain such linearized EOMs, we need to reduce the
convolution part between the 2PIR vertex function and the
response function into the simple product between relaxation
kernels and relaxation functions. For this purpose, we have
introduced the completeness in the space of the integral vari-
able, say y or w, associated with this convolution,

�
a

ua�y� · ua
��w� � ��y − w� .

Namely, by use of this, any convolution in principle can be
decomposed into a simple product,

	 dyf�. . . ,y�g�y, . . .�

� �
a
	 dyf�. . . ,y�ua�y� ·	 dwua

��w�g�w, . . .� .

In the current context, f�. . . ,y� corresponds to the 2PIR ver-
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tex function, while g�w ,¯� to the response function. There-
fore, �dy . . . f�. . . ,y�ua�y� corresponds to the relaxation ker-
nels, while �dwua

��w�g�w , . . .�. . . does to the relaxation
functions �see also Appendix B 1�. The trade off for this
decomposition is therefore the sum over infinite �but count-
able� numbers of modes specified by a.

To be more specific, we did this decomposition system-
atically, based on the completeness relation of the 
 matrices

and the spherical harmonic function Ylm�#̂�,

	 dwua
��w�g�w, . . .� → �

k̂

�
�,�

�
̂����Ylm
� �k̂�!�. . .,. . .���k�k̂, . . .� .

�D1�

As such, the momentum integral only over the angle direc-

tion, k̂, is taken, while that over its radial direction, �k�, is not
taken. As for the convolution with respect to this radial di-
rection, we simply replace the �x� dependence of !

¯

��x�x̂ , . . .�
by some real-valued function g

¯

��x��. Namely, we rewrite
the right-hand side of Eq. �D1� as follows:

�
k̂

�
�,�

�
̂����Ylm
� �k̂�!�. . .,. . .���k�k̂, . . .�

= glm,���k���
k

�
�,�

�
̂����Ylm
� �k̂�!�. . .,. . .��k, . . .� . �D2�

Let us justify this treatment in the followings. In the re-
sponse function, !��,
��k ,k� ;q ,
�, q and 
 are associated
with the external momentum and frequency for the bosonic
degrees of freedom. We can take these two to be small, as far
as the relaxation functions for the long-wavelength and low-
energy region is concerned. Then, such a response function is

usually dominated by the diffuson 	̂d�q ,
� �see Eq. �B23��.
As a result of this, the �k� dependence in the left-hand side of
Eq. �D2� and its q, 
 dependence can be factorized at the
leading order in small q and 
,

�
k�

�
k̂

�
�,�,


�
̂����Ylm
� �k̂�!�
,
��xk̂,k�;q,
�

= glm,��x��
k,k�

�
�,�,


�
̂����Ylm
� �k̂�!�
,
��k,k�;q,
�

= glm,��x� � �lm,��q,
� . �D3�

To see this factorization more explicitly, one can take the
following steps: �i� substitute the asymptotic tensor form of
the diffuson into Eq. �B23� and the left-hand side of Eq.

�D3�, �ii� take the integral and the sum over k̂, k�, �, �, and

 in Eq. �D3�, and �iii� retain the leading order in small q and

. By way of this, one can reach the factorization given in
the right-hand side of Eq. �D3� with a specific glm,��x�.

For example, let us follow these prescriptions in the case
of zero topological mass case. Observing Eq. �B43�, notice
first the following relation:

	̂��,
�
d �q,
��F5�0�
̂���,
 � 0, �D4�

for �=1,2 ,3. Using this, one can readily check that the dif-
fuson in this case turns out to be proportional to the unit
matrix when its right-hand side is traced out,

�
�,


	̂��,
�
d �q,
��F5=0�

k�,�

Ĝ��
R �k+�,�+�Ĝ�


A �k−�,�−�

=
1


 + iDq2�
k�

�F0�2 + k�2

�F0
2 − k�2�2

���.

As such, to obtain the normalized function g00,a�x� in the
massless case, we have only to calculate the following quan-
tity up to the leading order in small 
 and q:

�
k̂,k�,�,�,�

�v̂a�q����!��,���k,k�;q,
�

�
1

i
 − Dq2�
k̂

�
�,�,�

Ĝ��
R �k+,�+�Ĝ��

A �k−,�−��v̂a�q����.

For example, taking the current component as v̂a�q� above,
we have

�
k̂,k�,�,�,�

�q̂�
̂����!��,���k,k�;q,
�

� −
q

i
 − Dq2
 1

�F0
2 − k2�2

+
8

3

F0�
2k2

�F0
2 − k2�4� + O�q2,
� .

Observing the right-hand side, one can then convince oneself
of Eq. �D3�. Moreover, the normalized real-valued function
g00,j�x� will be obtained as in Eqs. �B50� and �B51�.
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